Here are some examples of inverse limits of sets.

  1. The $p$-Adic Integers. The ring of $p$-adic integers $\mathbb {Z}_{p}$ of is the inverse limit
    \[ \mathbb {Z}_{p}\cong \operatorname*{{\displaystyle \underset {\longleftarrow }{\operatorname*{\text{lim}}}}}_{n\in \mathbb {N}}\webleft (\mathbb {Z}_{/p^{n}}\webright ); \]

    see .

  2. Rings of Formal Power Series. The ring $R[\mspace {-3mu}[t]\mspace {-3mu}]$ of formal power series in a variable $t$ is the inverse limit
    \[ R[\mspace {-3mu}[t]\mspace {-3mu}]\cong \operatorname*{{\displaystyle \underset {\longleftarrow }{\operatorname*{\text{lim}}}}}_{n\in \mathbb {N}}\webleft (R\webleft [t\webright ]/t^{n}R\webleft [t\webright ]\webright ); \]

    see .

  3. Profinite Groups. Profinite groups are inverse limits of finite groups; see .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: