The initial set is the pair $\webleft (\text{Ø},\webleft\{ \iota _{A}\webright\} _{A\in \text{Obj}\webleft (\mathsf{Sets}\webright )}\webright )$ consisting of:

  1. The Colimit. The empty set $\text{Ø}$ of Definition 2.3.1.1.1.
  2. The Cocone. The collection of maps
    \[ \webleft\{ \iota _{A}\colon \text{Ø}\to A\webright\} _{A\in \text{Obj}\webleft (\mathsf{Sets}\webright )} \]

    given by the inclusion maps from $\text{Ø}$ to $A$.

We claim that $\text{Ø}$ is the initial object of $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon \text{Ø}\to A$ making the diagram

commute, namely the inclusion map $\iota _{A}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: