• The Colimit. The set $A\mathbin {\textstyle \coprod _{C}}B$ defined by
    \[ A\mathbin {\textstyle \coprod _{C}}B\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B/\mathord {\sim }_{C}, \]

    where $\mathord {\sim }_{C}$ is the equivalence relation on $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ generated by $\webleft (0,f\webleft (c\webright )\webright )\sim _{C}\webleft (1,g\webleft (c\webright )\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: