• Functoriality. The assignment $\mathcal{U}\mapsto \bigcup _{U\in \mathcal{U}}U$ defines a functor
    \[ \bigcup \colon \webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \]

    In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$, the following condition is satisfied:

    • If $\mathcal{U}\subset \mathcal{V}$, then $\displaystyle \bigcup _{U\in \mathcal{U}}U\subset \bigcup _{V\in \mathcal{V}}V$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: