• Interaction With Intersections of Families II. Let $X$ be a set and consider the compositions

    given by

    \[ \begin{aligned} \mathcal{A} & \mapsto \bigcup _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}}A}U,\\ \mathcal{A} & \mapsto \bigcup _{A\in \mathcal{A}}\webleft(\bigcap _{U\in A}U\webright), \end{aligned} \quad \begin{aligned} \mathcal{A} & \mapsto \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U,\\ \mathcal{A} & \mapsto \bigcap _{A\in \mathcal{A}}\webleft(\bigcup _{U\in A}U\webright) \end{aligned} \]

    for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$. We have the following inclusions:

    All other possible inclusions fail to hold in general.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: