• Interaction With Products II. The map
    where
    \[ U\boxtimes _{X\times Y}V\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (u,v\webright )\in X\times Y\ \middle |\ \text{$u\in U$ and $v\in V$}\webright\} \]

    is an inclusion of sets, natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ on $\mathcal{P}$ of Proposition 2.4.2.1.1. Moreover, this makes $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ into symmetric monoidal functors.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: