• Interaction With Products III. We have an isomorphism
    \[ \mathcal{P}\webleft (X\webright )\otimes \mathcal{P}\webleft (Y\webright )\cong \mathcal{P}\webleft (X\times Y\webright ), \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ on $\mathcal{P}$ of Proposition 2.4.2.1.1, where $\otimes $ denotes the tensor product of suplattices of . Moreover, this makes $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ into symmetric monoidal functors.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: