• Adjointness. We have adjunctions
    witnessed by bijections
    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\webleft [V,W\webright ]_{X}\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\webleft [U,W\webright ]_{X}\webright ). \end{align*}

    In particular, the following statements hold for each $U,V,W\in \mathcal{P}\webleft (X\webright )$:

    1. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $U\subset \webleft [V,W\webright ]_{X}$.
    2. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $V\subset \webleft [U,W\webright ]_{X}$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: