• Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.
    1. Interaction With Direct Images. The diagram

      commutes, i.e. we have

      \[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    2. Interaction With Inverse Images. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    3. Interaction With Direct Images With Compact Support. The diagram

      commutes, i.e. we have

      \[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: