Under the analogy that $\{ \mathsf{t},\mathsf{f}\} $ should be the $\webleft (-1\webright )$-categorical analogue of $\mathsf{Sets}$, we may view a function

\[ f\colon X\to \{ \mathsf{t},\mathsf{f}\} \]

as a decategorification of presheaves and copresheaves

\begin{gather*} \mathcal{F} \colon \mathcal{C}^{\mathsf{op}} \to \mathsf{Sets},\\ F \colon \mathcal{C} \to \mathsf{Sets}.\end{gather*}

The characteristic functions $\chi _{U}$ of the subsets of $X$ are then the primordial examples of such functions (and, in fact, all of them).


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: