• Functoriality. The assignment $\webleft (X,x_{0}\webright )\mapsto X^{-}$ defines a functor
    \[ X^{-}\colon \mathsf{Sets}^{\mathrm{actv}}_{*}\to \mathsf{Sets}, \]

    where:

    • Action on Objects. For each $X\in \text{Obj}\webleft (\mathsf{Sets}^{\mathrm{actv}}_{*}\webright )$, we have

      \[ \webleft [\webleft (-\webright )^{-}\webright ]\webleft (X\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{-}, \]

      where $X^{-}$ is the set of Definition 4.4.2.1.1.

    • Action on Morphisms. For each morphism $f\colon X\to Y$ of $\mathsf{Sets}^{\mathrm{actv}}_{*}$, the image

      \[ f^{-}\colon X^{-}\to Y^{-} \]

      of $f$ by $\webleft (-\webright )^{-}$ is the map defined by

      \[ f^{-}\webleft (x\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (x\webright ) \]

      for each $x\in X^{-}$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: