8.1.2 The Reflexive Closure of a Relation

Let $R$ be a relation on $A$.

The reflexive closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$1 satisfying the following universal property:2

  • Given another reflexive relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}\subset \mathord {\sim }_{S}$.


1Further Notation: Also written $R^{\mathrm{refl}}$.
2Slogan: The reflexive closure of $R$ is the smallest reflexive relation containing $R$.

Concretely, $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$ is the free pointed object on $R$ in $\webleft (\mathbf{Rel}\webleft (A,A\webright ),\chi _{A}\webright )$1 being given by

\begin{align*} R^{\mathrm{refl}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}^{\mathbf{Rel}\webleft (A,A\webright )}}\Delta _{A}\\ & = R\cup \Delta _{A}\\ & = \webleft\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $a=b$}\webright\} .\end{align*}


1Or, equivalently, the free $\mathbb {E}_{0}$-monoid on $R$ in $\webleft (\mathrm{N}_{\bullet }\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright ),\chi _{A}\webright )$.

Clear.

Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{refl}}\webleft (R^{\mathrm{refl}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{refl}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  2. The Reflexive Closure of a Reflexive Relation. If $R$ is reflexive, then $R^{\mathrm{refl}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{refl}}\webright )^{\mathrm{refl}} = R^{\mathrm{refl}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: