Concretely, $\smash {\mathord {\sim }^{\mathrm{refl}}_{R}}$ is the free pointed object on $R$ in $\webleft (\mathbf{Rel}\webleft (A,A\webright ),\chi _{A}\webright )$1 being given by

\begin{align*} R^{\mathrm{refl}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\mathbin {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}^{\mathbf{Rel}\webleft (A,A\webright )}}\Delta _{A}\\ & = R\cup \Delta _{A}\\ & = \webleft\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $a=b$}\webright\} .\end{align*}


1Or, equivalently, the free $\mathbb {E}_{0}$-monoid on $R$ in $\webleft (\mathrm{N}_{\bullet }\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright ),\chi _{A}\webright )$.

Clear.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: