8.2.2 The Symmetric Closure of a Relation

Let $R$ be a relation on $A$.

The symmetric closure of $\mathord {\sim }_{R}$ is the relation $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$1 satisfying the following universal property:2

  • Given another symmetric relation $\mathord {\sim }_{S}$ on $A$ such that $R\subset S$, there exists an inclusion $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}\subset \mathord {\sim }_{S}$.


1Further Notation: Also written $R^{\mathrm{symm}}$.
2Slogan: The symmetric closure of $R$ is the smallest symmetric relation containing $R$.

Concretely, $\smash {\mathord {\sim }^{\mathrm{symm}}_{R}}$ is the symmetric relation on $A$ defined by

\begin{align*} R^{\mathrm{symm}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}R\cup R^{\dagger }\\ & = \webleft\{ \webleft (a,b\webright )\in A\times A\ \middle |\ \text{we have $a\sim _{R}b$ or $b\sim _{R}a$}\webright\} .\end{align*}

Clear.

Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{symm}}\webleft (R^{\mathrm{symm}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{symm}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,A\webright )\webright )$.

  2. The Symmetric Closure of a Symmetric Relation. If $R$ is symmetric, then $R^{\mathrm{symm}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{symm}}\webright )^{\mathrm{symm}} = R^{\mathrm{symm}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: