Let $R$ be a relation on $A$.

  1. Adjointness. We have an adjunction
    witnessed by a bijection of sets
    \[ \mathbf{Rel}^{\mathsf{trans}}\webleft (R^{\mathrm{trans}},S\webright ) \cong \mathbf{Rel}\webleft (R,S\webright ), \]

    natural in $R\in \text{Obj}\webleft (\mathbf{Rel}^{\mathsf{trans}}\webleft (A,A\webright )\webright )$ and $S\in \text{Obj}\webleft (\mathbf{Rel}\webleft (A,B\webright )\webright )$.

  2. The Transitive Closure of a Transitive Relation. If $R$ is transitive, then $R^{\mathrm{trans}}=R$.
  3. Idempotency. We have
    \[ \webleft (R^{\mathrm{trans}}\webright )^{\mathrm{trans}} = R^{\mathrm{trans}}. \]
  4. Interaction With Inverses. We have
  5. Interaction With Composition. We have

Item 1: Adjointness
This is a rephrasing of the universal property of the transitive closure of a relation, stated in Definition 8.3.2.1.1.
Item 2: The Transitive Closure of a Transitive Relation
Clear.
Item 3: Idempotency
This follows from Item 2.
Item 4: Interaction With Inverses
We have

\begin{align*} \webleft (R^{\dagger }\webright )^{\mathrm{trans}} & = \bigcup _{n=1}^{\infty }\webleft (R^{\dagger }\webright )^{\mathbin {\diamond }n}\\ & = \bigcup _{n=1}^{\infty }\webleft (R^{\mathbin {\diamond }n}\webright )^{\dagger }\\ & = \webleft (\bigcup _{n=1}^{\infty }R^{\mathbin {\diamond }n}\webright )^{\dagger }\\ & = \webleft (R^{\mathrm{trans}}\webright )^{\dagger }, \end{align*}

where we have used, respectively:

  1. Construction 8.3.2.1.2;
  2. Chapter 7: Constructions With Relations, Item 4 of Proposition 7.3.12.1.3;
  3. Chapter 7: Constructions With Relations, Item 1 of Proposition 7.3.6.1.2;
  4. Construction 8.3.2.1.2.

Item 5: Interaction With Composition
This follows from Item 2 of Proposition 8.3.1.1.4.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: