• Descending Functions to Quotient Sets, VI. Let $R$ be a relation on $X$ and let $\mathord {\sim }^{\mathrm{eq}}_{R}$ be the equivalence relation associated to $R$. The following conditions are equivalent:
    1. The map $f$ satisfies the equivalent conditions of Item 4:
      • There exists a map
        \[ \overline{f}\colon X/\mathord {\sim }^{\mathrm{eq}}_{R}\to Y \]

        making the diagram

        commute.

      • For each $x,y\in X$, if $x\sim ^{\mathrm{eq}}_{R}y$, then $f\webleft (x\webright )=f\webleft (y\webright )$.

    2. For each $x,y\in X$, if $x\sim _{R}y$, then $f\webleft (x\webright )=f\webleft (y\webright )$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: