• If there exists a natural transformation
    \[ \alpha ^{\otimes }_{A,B,C}\colon \webleft (A\otimes _{\mathcal{C}}B\webright )\boxtimes _{\mathcal{C}}C\to A\otimes _{\mathcal{C}}\webleft (B\boxtimes _{\mathcal{C}}C\webright ) \]

    making the diagrams

    and

    commute, then the natural transformation $\text{id}^{\otimes }$ satisfies the monoidality condition of Item 2 of Remark 10.1.1.1.3.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: