The symmetric monoidal structure on the category $\mathsf{Sets}_{*}$ is the unique symmetric monoidal structure on $\mathsf{Sets}_{*}$ such that the free pointed set functor

\[ \webleft (-\webright )^{+} \colon \mathsf{Sets}\to \mathsf{Sets}_{*} \]

admits a symmetric monoidal structure, i.e. the full subcategory of the category $\mathcal{M}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}_{*}\webright )$ of spanned by the symmetric monoidal categories $\webleft(\phantom{\mathrlap {\lambda ^{\mathsf{Sets}_{*}}}}\mathsf{Sets}_{*}\right.$, $\otimes _{\mathsf{Sets}_{*}}$, $\mathbb {1}_{\mathsf{Sets}_{*}}$, $\lambda ^{\mathsf{Sets}_{*}}$, $\rho ^{\mathsf{Sets}_{*}}$, $\left.\sigma ^{\mathsf{Sets}_{*}}\webright)$ with respect to which $\webleft (-\webright )^{+}$ admits a symmetric monoidal structure is contractible.

Let $\webleft (\otimes _{\mathsf{Sets}_{*}},\mathbb {1}_{\mathsf{Sets}_{*}},\lambda ^{\mathsf{Sets}_{*}},\rho ^{\mathsf{Sets}_{*}},\sigma ^{\mathsf{Sets}_{*}}\webright )$ be a symmetric monoidal structure on $\mathsf{Sets}_{*}$ such that $\webleft (-\webright )^{+}$ admits a symmetric monoidal structure with respect to $\otimes _{\mathsf{Sets}_{*}}$ and $\wedge $. We have isomorphisms

\begin{align*} X\otimes _{\mathsf{Sets}_{*}}Y & \cong \webleft (X^{-}\webright )^{+}\otimes _{\mathsf{Sets}_{*}}\webleft (Y^{-}\webright )^{+}\\ & \cong \webleft (X^{-}\times Y^{-}\webright )^{+}\\ & \cong \webleft (X^{-}\webright )^{+}\wedge \webleft (Y^{-}\webright )^{+}\\ & \cong X\wedge Y, \end{align*}

all natural in $X$ and $Y$. Now, since $\wedge $ preserves colimits in both variables and $\mathord {\otimes _{\mathsf{Sets}_{*}}}\cong \mathord {\wedge }$, it follows that $\otimes _{\mathsf{Sets}_{*}}$ also preserves colimits in both variables, so the result then follows from Corollary 5.5.10.1.2.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: