\[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]. \]
-
For example, given a function
\[ \Phi \colon \textup{Hom}_{\mathsf{Sets}}\webleft (X,Y\webright )\to K \]
taking values on a set of functions such as $\textup{Hom}_{\mathsf{Sets}}\webleft (X,Y\webright )$, we will sometimes also write
\[ \Phi \webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi \webleft ([\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\webright ). \]
-
This notational choice is based on the lambda notation
\[ f\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\lambda x.\ f\webleft (x\webright )\webright ), \]
but uses a “$\mathord {\mapsto }$” symbol for better spacing and double brackets instead of either:
-
Square brackets $\webleft [x\mapsto f\webleft (x\webright )\webright ]$;
-
Parentheses $\webleft (x\mapsto f\webleft (x\webright )\webright )$;
hoping to improve readability when dealing with e.g.:
-
Equivalence classes, cf.:
-
$[\mspace {-3mu}[\webleft [x\webright ]\mapsto f\webleft (\webleft [x\webright ]\webright )]\mspace {-3mu}]$
-
$\webleft [\webleft [x\webright ]\mapsto f\webleft (\webleft [x\webright ]\webright )\webright ]$
-
$\webleft (\lambda \webleft [x\webright ].\ f\webleft (\webleft [x\webright ]\webright )\webright )$
-
Function evaluations, cf.:
-
$\Phi \webleft ([\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\webright )$
-
$\Phi \webleft (\webleft (x\mapsto f\webleft (x\webright )\webright )\webright )$
-
$\Phi \webleft (\webleft (\lambda x.\ f\webleft (x\webright )\webright )\webright )$
-
We will also sometimes write $-_{1}$, $-_{2}$, etc. for the arguments of a function. Some examples include:
-
Writing $f\webleft (-_{1}\webright )$ for a function $f\colon A\to B$.
-
Writing $f\webleft (-_{1},-_{2}\webright )$ for a function $f\colon A\times B\to C$.
-
Given a function $f\colon A\times B\to C$, writing
\[ f\webleft (a,-\webright )\colon B\to C \]
for the function $[\mspace {-3mu}[b\mapsto f\webleft (a,b\webright )]\mspace {-3mu}]$.
-
Denoting a composition of the form
\[ A\times B\overset {\phi \times \text{id}_{B}}{\to }A'\times B\overset {f}{\to }C \]
by $f\webleft (\phi \webleft (-_{1}\webright ),-_{2}\webright )$.
-
Finally, given a function $f\colon A\to B$, we write
\[ \mathrm{ev}_{a}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (a\webright ) \]
for the value of $f$ at some $a\in A$.
For an example of the above notations being used in practice, see the proof of the adjunction