2.1.2 Products of Families of Sets

Let $\webleft\{ A_{i}\webright\} _{i\in I}$ be a family of sets.

The product[1] of $\webleft\{ A_{i}\webright\} _{i\in I}$ is the pair $\webleft (\prod _{i\in I}A_{i},\webleft\{ \text{pr}_{i}\webright\} _{i\in I}\webright )$ consisting of:

  • The Limit. The set $\prod _{i\in I}A_{i}$ defined by[2]

    \[ \prod _{i\in I}A_{i} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \mathsf{Sets}\webleft (I,\bigcup _{i\in I}A_{i}\webright )\ \middle |\ \text{for each $i\in I$, we have $f\webleft (i\webright )\in A_{i}$}\webright\} . \]

  • The Cone. The collection

    \[ \webleft\{ \text{pr}_{i} \colon \prod _{i\in I}A_{i}\to A_{i}\webright\} _{i\in I} \]

    of maps given by

    \[ \text{pr}_{i}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (i\webright ) \]

    for each $f\in \prod _{i\in I}A_{i}$ and each $i\in I$.

We claim that $\prod _{i\in I}A_{i}$ is the categorical product of $\webleft\{ A_{i}\webright\} _{i\in I}$ in $\mathsf{Sets}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to \prod _{i\in I}A_{i}$ making the diagram

commute, being uniquely determined by the condition $\text{pr}_{i}\circ \phi =p_{i}$ for each $i\in I$ via

\[ \phi \webleft (x\webright )=\webleft (p_{i}\webleft (x\webright )\webright )_{i\in I} \]

for each $x\in P$.

Let $\webleft\{ A_{i}\webright\} _{i\in I}$ be a family of sets.

  1. Functoriality. The assignment $\webleft\{ A_{i}\webright\} _{i\in I}\mapsto \prod _{i\in I}A_{i}$ defines a functor
    \[ \prod _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\to \mathsf{Sets} \]

    where

    • Action on Objects. For each $\webleft (A_{i}\webright )_{i\in I}\in \text{Obj}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, we have

      \[ \webleft[\prod _{i\in I}\webright]\webleft (\webleft (A_{i}\webright )_{i\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\prod _{i\in I}A_{i} \]

    • Action on Morphisms. For each $\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\in \text{Obj}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, the action on $\textup{Hom}$-sets

      \[ \webleft (\prod _{i\in I}\webright )_{\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}} \colon \text{Nat}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )\to \mathsf{Sets}\webleft (\prod _{i\in I}A_{i},\prod _{i\in I}B_{i}\webright ) \]

      of $\prod _{i\in I}$ at $\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ is defined by sending a map

      \[ \webleft\{ f_{i}\colon A_{i}\to B_{i} \webright\} _{i\in I} \]

      in $\text{Nat}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ to the map of sets

      \[ \prod _{i\in I}f_{i}\colon \prod _{i\in I}A_{i}\to \prod _{i\in I}B_{i} \]

      defined by

      \[ \webleft[\prod _{i\in I}f_{i}\webright]\webleft (\webleft (a_{i}\webright )_{i\in I}\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{i}\webleft (a_{i}\webright )\webright )_{i\in I} \]

      for each $\webleft (a_{i}\webright )_{i\in I}\in \prod _{i\in I}A_{i}$.

Item 1: Functoriality
This follows from of .


Footnotes

[1] Further Terminology: Also called the Cartesian product of $\webleft\{ A_{i}\webright\} _{i\in I}$.
[2] Less formally, $\prod _{i\in I}A_{i}$ is the set whose elements are $I$-indexed collections $\webleft (a_{i}\webright )_{i\in I}$ with $a_{i}\in A_{i}$ for each $i\in I$. The projection maps
\[ \webleft\{ \text{pr}_{i} \colon \prod _{i\in I}A_{i}\to A_{i}\webright\} _{i\in I} \]
are then given by
\[ \text{pr}_{i}\webleft (\webleft (a_{j}\webright )_{j\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}a_{i} \]
for each $\webleft (a_{j}\webright )_{j\in I}\in \prod _{i\in I}A_{i}$ and each $i\in I$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: