The product of $\webleft\{ A_{i}\webright\} _{i\in I}$ is the pair $\webleft (\prod _{i\in I}A_{i},\webleft\{ \text{pr}_{i}\webright\} _{i\in I}\webright )$ consisting of:

  1. The Limit. The set $\prod _{i\in I}A_{i}$ defined by
    \[ \prod _{i\in I}A_{i} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ f\in \mathsf{Sets}\webleft(I,\bigcup _{i\in I}A_{i}\webright)\ \middle |\ \text{for each $i\in I$, we have $f\webleft (i\webright )\in A_{i}$}\webright\} . \]
  2. The Cone. The collection
    \[ \webleft\{ \text{pr}_{i} \colon \prod _{i\in I}A_{i}\to A_{i}\webright\} _{i\in I} \]

    of maps given by

    \[ \text{pr}_{i}\webleft (f\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f\webleft (i\webright ) \]

    for each $f\in \prod _{i\in I}A_{i}$ and each $i\in I$.

We claim that $\prod _{i\in I}A_{i}$ is the categorical product of $\webleft\{ A_{i}\webright\} _{i\in I}$ in $\mathsf{Sets}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon P\to \prod _{i\in I}A_{i}$ making the diagram

commute, being uniquely determined by the condition $\text{pr}_{i}\circ \phi =p_{i}$ for each $i\in I$ via

\[ \phi \webleft (x\webright )=\webleft (p_{i}\webleft (x\webright )\webright )_{i\in I} \]

for each $x\in P$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: