2.2.2 Coproducts of Families of Sets

Let $\webleft\{ A_{i}\webright\} _{i\in I}$ be a family of sets.

The coproduct of $\webleft\{ A_{i}\webright\} _{i\in I}$1 is the coproduct of $\webleft\{ A_{i}\webright\} _{i\in I}$ in $\mathsf{Sets}$ as in , .


1Further Terminology: Also called the disjoint union of the family $\webleft\{ A_{i}\webright\} _{i\in I}$.

The disjoint union of $\webleft\{ A_{i}\webright\} _{i\in I}$ is the pair $\webleft (\coprod _{i\in I}A_{i},\webleft\{ \mathrm{inj}_{i}\webright\} _{i\in I}\webright )$ consisting of:

  1. The Colimit. The set $\coprod _{i\in I}A_{i}$ defined by
    \[ \coprod _{i\in I}A_{i}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (i,x\webright )\in I\times \webleft(\bigcup _{i\in I}A_{i}\webright)\ \middle |\ \text{$x\in A_{i}$}\webright\} . \]
  2. The Cocone. The collection
    \[ \webleft\{ \mathrm{inj}_{i} \colon A_{i}\to \coprod _{i\in I}A_{i}\webright\} _{i\in I} \]

    of maps given by

    \[ \mathrm{inj}_{i}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (i,x\webright ) \]

    for each $x\in A_{i}$ and each $i\in I$.

We claim that $\coprod _{i\in I}A_{i}$ is the categorical coproduct of $\webleft\{ A_{i}\webright\} _{i\in I}$ in $\mathsf{Sets}$. Indeed, suppose we have, for each $i\in I$, a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon \coprod _{i\in I}A_{i}\to C$ making the diagram

commute, being uniquely determined by the condition $\phi \circ \mathrm{inj}_{i}=\iota _{i}$ for each $i\in I$ via

\[ \phi \webleft (\webleft (i,x\webright )\webright )=\iota _{i}\webleft (x\webright ) \]

for each $\webleft (i,x\webright )\in \coprod _{i\in I}A_{i}$.

Let $\webleft\{ A_{i}\webright\} _{i\in I}$ be a family of sets.

  1. Functoriality. The assignment $\webleft\{ A_{i}\webright\} _{i\in I}\mapsto \coprod _{i\in I}A_{i}$ defines a functor
    \[ \coprod _{i\in I}\colon \mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\to \mathsf{Sets} \]

    where

    • Action on Objects. For each $\webleft (A_{i}\webright )_{i\in I}\in \text{Obj}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, we have

      \[ \webleft[\coprod _{i\in I}\webright]\webleft (\webleft (A_{i}\webright )_{i\in I}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{i\in I}A_{i} \]

    • Action on Morphisms. For each $\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\in \text{Obj}\webleft (\mathsf{Fun}\webleft (I_{\mathsf{disc}},\mathsf{Sets}\webright )\webright )$, the action on $\textup{Hom}$-sets

      \[ \webleft(\coprod _{i\in I}\webright)_{\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}} \colon \text{Nat}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )\to \mathsf{Sets}\webleft(\coprod _{i\in I}A_{i},\coprod _{i\in I}B_{i}\webright) \]

      of $\coprod _{i\in I}$ at $\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ is defined by sending a map

      \[ \webleft\{ f_{i}\colon A_{i}\to B_{i} \webright\} _{i\in I} \]

      in $\text{Nat}\webleft (\webleft (A_{i}\webright )_{i\in I},\webleft (B_{i}\webright )_{i\in I}\webright )$ to the map of sets

      \[ \coprod _{i\in I}f_{i}\colon \coprod _{i\in I}A_{i}\to \coprod _{i\in I}B_{i} \]

      defined by

      \[ \webleft[\coprod _{i\in I}f_{i}\webright]\webleft (i,a\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{i}\webleft (a\webright ) \]

      for each $\webleft (i,a\webright )\in \coprod _{i\in I}A_{i}$.

Item 1: Functoriality
This follows from , of .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: