2.2.3 Binary Coproducts

Let $A$ and $B$ be sets.

The coproduct of $A$ and $B$1 is the coproduct of $A$ and $B$ in $\mathsf{Sets}$ as in , .


1Further Terminology: Also called the disjoint union of $A$ and $B$.

The coproduct of $A$ and $B$ is the pair $\webleft (A\coprod B,\webleft\{ \mathrm{inj}_{1},\mathrm{inj}_{2}\webright\} \webright )$ consisting of:

  1. The Colimit. The set $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defined by
    \begin{align*} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{z\in \webleft\{ A,B\webright\} }z\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (0,a\webright )\in S\ \middle |\ a\in A\webright\} \cup \webleft\{ \webleft (1,b\webright )\in S\ \middle |\ b\in B\webright\} , \end{align*}

    where $S=\webleft\{ 0,1\webright\} \times \webleft (A\cup B\webright )$.

  2. The Cocone. The maps
    \begin{align*} \mathrm{inj}_{1} & \colon A \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,\\ \mathrm{inj}_{2} & \colon B \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B, \end{align*}

    given by

    \begin{align*} \mathrm{inj}_{1}\webleft (a\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (0,a\webright ),\\ \mathrm{inj}_{2}\webleft (b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (1,b\webright ), \end{align*}

    for each $a\in A$ and each $b\in B$.

We claim that $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ is the categorical coproduct of $A$ and $B$ in $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to C$ making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \phi \circ \mathrm{inj}_{A} & = \iota _{A},\\ \phi \circ \mathrm{inj}_{B} & = \iota _{B} \end{align*}

via

\[ \phi \webleft (x\webright )=\begin{cases} \iota _{A}\webleft (a\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \iota _{B}\webleft (b\webright ) & \text{if $x=\webleft (1,b\webright )$} \end{cases} \]

for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

Let $A$, $B$, $C$, and $X$ be sets.

  1. Functoriality. The assignment $A,B,\webleft (A,B\webright )\mapsto A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defines functors
    \[ \begin{array}{ccc} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\colon \mkern -15mu & \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets},\\ -_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}\colon \mkern -15mu & \mathsf{Sets}\times \mathsf{Sets} \mkern -17.5mu& {}\mathbin {\to }\mathsf{Sets}, \end{array} \]

    where $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ is the functor where

    • Action on Objects. For each $\webleft (A,B\webright )\in \text{Obj}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have

      \[ \webleft [-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}\webright ]\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B. \]

    • Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on $\textup{Hom}$-sets

      \[ \mathbin {\textstyle \coprod _{\webleft (A,B\webright ),\webleft (X,Y\webright )}} \colon \mathsf{Sets}\webleft (A,X\webright )\times \mathsf{Sets}\webleft (B,Y\webright )\to \mathsf{Sets}\webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ) \]

      of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function

      \[ f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y \]

      defined by

      \[ \webleft [f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright ]\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \webleft (0,f\webleft (a\webright )\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \webleft (1,g\webleft (b\webright )\webright ) & \text{if $x=\webleft (1,b\webright )$,}\end{cases} \]

      for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

    and where $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-$ and $-\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ are the partial functors of $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ at $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  2. Associativity. We have an isomorphism of sets
    \[ \alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y,Z} \colon \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Z \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (Y\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Z\webright ), \]

    natural in $X,Y,Z\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  3. Unitality. We have isomorphisms of sets
    \begin{align*} \lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X} & \colon \text{Ø}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X,\\ \rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X} & \colon X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\text{Ø}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }X, \end{align*}

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Commutativity. We have an isomorphism of sets
    \[ \sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}_{X,Y} \colon X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }Y\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}X, \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  5. Symmetric Monoidality. The 7-tuple $\webleft(\phantom{\mathrlap {\alpha ^{\mathsf{Sets}}}}\mathsf{Sets}\right.$, $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$, $\text{Ø}$, $\alpha ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\lambda ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\rho ^{\mathsf{Sets}}_{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}$, $\left.\sigma ^{\mathsf{Sets}}\webright)$ is a symmetric monoidal category.

Item 1: Functoriality
This follows from , of .
Item 2: Associativity
This is proved in the proof of Chapter 3: Monoidal Structures on the Category of Sets, Definition 3.2.3.1.1.
Item 3: Unitality
This is proved in the proof of Chapter 3: Monoidal Structures on the Category of Sets, Definition 3.2.4.1.1 and Definition 3.2.5.1.1.
Item 4: Commutativity
This is proved in the proof of Chapter 3: Monoidal Structures on the Category of Sets, Definition 3.2.6.1.1.

Item 5: Symmetric Monoidality
This is a repetition of Chapter 3: Monoidal Structures on the Category of Sets, Proposition 3.2.7.1.1, and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: