2.2.3 Binary Coproducts

Let $A$ and $B$ be sets.

The coproduct[1] of $A$ and $B$ is the pair $\webleft (A\coprod B,\webleft\{ \mathrm{inj}_{1},\mathrm{inj}_{2}\webright\} \webright )$ consisting of:

  • The Colimit. The set $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defined by

    \begin{align*} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\coprod _{z\in \webleft\{ A,B\webright\} }z\\ & \cong \webleft\{ \webleft (0,a\webright )\ \middle |\ a\in A\webright\} \cup \webleft\{ \webleft (1,b\webright )\ \middle |\ b\in B\webright\} . \end{align*}

  • The Cocone. The maps

    \begin{align*} \mathrm{inj}_{1} & \colon A \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,\\ \mathrm{inj}_{2} & \colon B \to A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B, \end{align*}

    given by

    \begin{align*} \mathrm{inj}_{1}\webleft (a\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (0,a\webright ),\\ \mathrm{inj}_{2}\webleft (b\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (1,b\webright ), \end{align*}

    for each $a\in A$ and each $b\in B$.

We claim that $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ is the categorical coproduct of $A$ and $B$ in $\mathsf{Sets}$. Indeed, suppose we have a diagram of the form

in $\mathsf{Sets}$. Then there exists a unique map $\phi \colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to C$ making the diagram

commute, being uniquely determined by the conditions

\begin{align*} \phi \circ \mathrm{inj}_{A} & = \iota _{A},\\ \phi \circ \mathrm{inj}_{B} & = \iota _{B} \end{align*}

via

\[ \phi \webleft (x\webright )=\begin{cases} \iota _{A}\webleft (a\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \iota _{B}\webleft (b\webright ) & \text{if $x=\webleft (1,b\webright )$} \end{cases} \]

for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

Let $A$, $B$, $C$, and $X$ be sets.

  1. Functoriality. The assignment $A,B,\webleft (A,B\webright )\mapsto A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ defines functors
    \begin{gather*} \begin{aligned} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}- & \colon \mathsf{Sets}\to \mathsf{Sets},\\ -\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B & \colon \mathsf{Sets}\to \mathsf{Sets},\\ \end{aligned}\\ -_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2} \colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets}, \end{gather*}

    where $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ is the functor where

    • Action on Objects. For each $\webleft (A,B\webright )\in \text{Obj}\webleft (\mathsf{Sets}\times \mathsf{Sets}\webright )$, we have

      \[ \webleft [-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}\webright ]\webleft (A,B\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B. \]

    • Action on Morphisms. For each $\webleft (A,B\webright ),\webleft (X,Y\webright )\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the action on $\textup{Hom}$-sets

      \[ \mathbin {\textstyle \coprod _{\webleft (A,B\webright ),\webleft (X,Y\webright )}} \colon \mathsf{Sets}\webleft (A,X\webright )\times \mathsf{Sets}\webleft (B,Y\webright )\to \mathsf{Sets}\webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B,X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright ) \]

      of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$ at $\webleft (\webleft (A,B\webright ),\webleft (X,Y\webright )\webright )$ is defined by sending $\webleft (f,g\webright )$ to the function

      \[ f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\colon A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\to X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y \]

      defined by

      \[ \webleft [f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright ]\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \webleft (0,f\webleft (a\webright )\webright ) & \text{if $x=\webleft (0,a\webright )$,}\\ \webleft (1,g\webleft (b\webright )\webright ) & \text{if $x=\webleft (1,b\webright )$,}\end{cases} \]

      for each $x\in A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$.

    and where $A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-$ and $-\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B$ are the partial functors of $-_{1}\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}-_{2}$ at $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  2. Associativity. We have an isomorphism of sets
    \[ \webleft (A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C \cong A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}C\webright ), \]

    natural in $A,B,C\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  3. Unitality. We have isomorphisms of sets
    \begin{align*} A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\emptyset & \cong A,\\ \emptyset \mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}A & \cong A, \end{align*}

    natural in $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Commutativity. We have an isomorphism of sets
    \[ A\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}B \cong B\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}A, \]

    natural in $A,B\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  5. Symmetric Monoidality. The triple $\webleft (\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }},\emptyset \webright )$ is a symmetric monoidal category.

Item 1: Functoriality
This follows from of .
Item 2: Associativity
Clear.
Item 3: Unitality
Clear.
Item 4: Commutativity
Clear.

Item 5: Symmetric Monoidality
Omitted.


Footnotes

[1] Further Terminology: Also called the disjoint union of $A$ and $B$, or the binary disjoint union of $A$ and $B$, for emphasis.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: