3 Monoidal Structures on the Category of Sets
This chapter contains some material on monoidal structures on
-
Section 3.1: The Monoidal Category of Sets and Products
- Subsection 3.1.1: Products of Sets
- Subsection 3.1.2: The Internal Hom of Sets
-
Subsection 3.1.3: The Monoidal Unit
-
Definition 3.1.3.1.1: The Monoidal Unit of
-
Definition 3.1.3.1.1: The Monoidal Unit of
-
Subsection 3.1.4: The Associator
-
Definition 3.1.4.1.1: The Associator of
-
Definition 3.1.4.1.1: The Associator of
-
Subsection 3.1.5: The Left Unitor
-
Definition 3.1.5.1.1: The Left Unitor of
-
Definition 3.1.5.1.1: The Left Unitor of
-
Subsection 3.1.6: The Right Unitor
-
Definition 3.1.6.1.1: The Right Unitor of
-
Definition 3.1.6.1.1: The Right Unitor of
-
Subsection 3.1.7: The Symmetry
-
Definition 3.1.7.1.1: The Symmetry of
-
Definition 3.1.7.1.1: The Symmetry of
- Subsection 3.1.8: The Diagonal
-
Subsection 3.1.9: The Monoidal Category of Sets and Products
- Proposition 3.1.9.1.1: The Monoidal Structure on Sets Associated to the Product
-
Subsection 3.1.10: The Universal Property of
-
Theorem 3.1.10.1.1: The Universal Property of
-
Corollary 3.1.10.1.2: A Second Universal Property for
-
Theorem 3.1.10.1.1: The Universal Property of
-
Section 3.2: The Monoidal Category of Sets and Coproducts
- Subsection 3.2.1: Coproducts of Sets
-
Subsection 3.2.2: The Monoidal Unit
-
Definition 3.2.2.1.1: The Monoidal Unit of
-
Definition 3.2.2.1.1: The Monoidal Unit of
-
Subsection 3.2.3: The Associator
-
Definition 3.2.3.1.1: The Associator of
-
Definition 3.2.3.1.1: The Associator of
-
Subsection 3.2.4: The Left Unitor
-
Definition 3.2.4.1.1: The Left Unitor of
-
Definition 3.2.4.1.1: The Left Unitor of
-
Subsection 3.2.5: The Right Unitor
-
Definition 3.2.5.1.1: The Right Unitor of
-
Definition 3.2.5.1.1: The Right Unitor of
-
Subsection 3.2.6: The Symmetry
-
Definition 3.2.6.1.1: The Symmetry of
-
Definition 3.2.6.1.1: The Symmetry of
-
Subsection 3.2.7: The Monoidal Category of Sets and Coproducts
-
Proposition 3.2.7.1.1: The Monoidal Structure on Sets Associated to
-
Proposition 3.2.7.1.1: The Monoidal Structure on Sets Associated to
-
Section 3.3: The Bimonoidal Category of Sets, Products, and Coproducts
-
Subsection 3.3.1: The Left Distributor
-
Definition 3.3.1.1.1: The Left Distributor of
over
-
Definition 3.3.1.1.1: The Left Distributor of
-
Subsection 3.3.2: The Right Distributor
-
Definition 3.3.2.1.1: The Right Distributor of
over
-
Definition 3.3.2.1.1: The Right Distributor of
-
Subsection 3.3.3: The Left Annihilator
-
Definition 3.3.3.1.1: The Left Annihilator of
-
Definition 3.3.3.1.1: The Left Annihilator of
-
Subsection 3.3.4: The Right Annihilator
-
Definition 3.3.4.1.1: The Right Annihilator of
-
Definition 3.3.4.1.1: The Right Annihilator of
-
Subsection 3.3.5: The Bimonoidal Category of Sets, Products, and Coproducts
-
Proposition 3.3.5.1.1: The Bimonoidal Structure on Sets Associated to
and
-
Proposition 3.3.5.1.1: The Bimonoidal Structure on Sets Associated to
-
Subsection 3.3.1: The Left Distributor