The right distributor of the product of sets over the coproduct of sets is the natural isomorphism
as in the diagram whose component
\[ \delta ^{\mathsf{Sets}}_{r|X,Y,Z}\colon \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\times Z\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\webleft (X\times Z\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\webleft (Y\times Z\webright ) \]
at $\webleft (X,Y,Z\webright )$ is defined by
\[ \delta ^{\mathsf{Sets}}_{r|X,Y,Z}\webleft (a,z\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\begin{cases} \webleft (0,\webleft (x,z\webright )\webright ) & \text{if $a=\webleft (0,x\webright )$,}\\ \webleft (1,\webleft (y,z\webright )\webright ) & \text{if $a=\webleft (1,y\webright )$} \end{cases} \]
for each $\webleft (a,z\webright )\in \webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\times Z$.