The symmetric monoidal structure on the category $\mathsf{Sets}$ of Proposition 3.1.9.1.1 is uniquely determined by the following requirements:

  1. Two-Sided Preservation of Colimits. The tensor product
    \[ \otimes _{\mathsf{Sets}}\colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets} \]

    of $\mathsf{Sets}$ preserves colimits separately in each variable.

  2. The Unit Object Is $\text{pt}$. We have $\mathbb {1}_{\mathsf{Sets}}\cong \text{pt}$.

More precisely, the full subcategory of the category $\mathcal{M}_{\mathbb {E}_{\infty }}\webleft (\mathsf{Sets}\webright )$ of spanned by the symmetric monoidal categories $\webleft (\mathsf{Sets},\otimes _{\mathsf{Sets}},\mathbb {1}_{\mathsf{Sets}},\lambda ^{\mathsf{Sets}},\rho ^{\mathsf{Sets}},\sigma ^{\mathsf{Sets}}\webright )$ satisfying Item 1 and Item 2 is contractible.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: