3.2.7 The Monoidal Category of Sets and Coproducts

The category $\mathsf{Sets}$ admits a closed symmetric monoidal category structure consisting of:

  • The Underlying Category. The category $\mathsf{Sets}$ of pointed sets.
  • The Monoidal Product. The coproduct functor

    \[ \mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets} \]

    of Chapter 2: Constructions With Sets, Item 1 of Proposition 2.2.3.1.3.

  • The Monoidal Unit. The functor

    \[ \mathbb {0}^{\mathsf{Sets}} \colon \mathsf{pt}\to \mathsf{Sets} \]

    of Definition 3.2.2.1.1.

  • The Associators. The natural isomorphism

    \[ \alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}} \colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft ({\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\times \text{id}_{\mathsf{Sets}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft (\text{id}_{\mathsf{Sets}}\times {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}} \]

    of Definition 3.2.3.1.1.

  • The Left Unitors. The natural isomorphism

    \[ \lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft (\mathbb {0}^{\mathsf{Sets}}\times \text{id}_{\mathsf{Sets}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}} \]

    of Definition 3.2.4.1.1.

  • The Right Unitors. The natural isomorphism

    \[ \rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft ({\mathsf{id}}\times {\mathbb {0}^{\mathsf{Sets}}}\webright )}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}} \]

    of Definition 3.2.5.1.1.

  • The Symmetry. The natural isomorphism

    \[ \sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}} \colon {\times } \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\times }\circ {\mathbf{\sigma }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets},\mathsf{Sets}}} \]

    of Definition 3.2.6.1.1.

The Pentagon Identity
Let $W$, $X$, $Y$ and $Z$ be sets. We have to show that the diagram
commutes. Indeed, this diagram acts on elements as
and therefore the pentagon identity is satisfied.

The Triangle Identity
Let $X$ and $Y$ be sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and therefore the triangle identity is satisfied.

The Left Hexagon Identity
Let $X$, $Y$, and $Z$ be sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus the left hexagon identity is satisfied.

The Right Hexagon Identity
Let $X$, $Y$, and $Z$ be sets. We have to show that the diagram

commutes. Indeed, this diagram acts on elements as

and thus the right hexagon identity is satisfied.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: