The category $\mathsf{Sets}$ admits a closed symmetric monoidal category structure consisting of:
- The Underlying Category. The category $\mathsf{Sets}$ of pointed sets.
- The Monoidal Product. The coproduct functor
\[ \mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}\colon \mathsf{Sets}\times \mathsf{Sets}\to \mathsf{Sets} \]
of Chapter 2: Constructions With Sets, Item 1 of Proposition 2.2.3.1.3.
- The Monoidal Unit. The functor
\[ \mathbb {0}^{\mathsf{Sets}} \colon \mathsf{pt}\to \mathsf{Sets} \]
- The Associators. The natural isomorphism
\[ \alpha ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}} \colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft ({\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\times \text{id}_{\mathsf{Sets}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft (\text{id}_{\mathsf{Sets}}\times {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\webright )}\circ {\mathbf{\alpha }^{\mathsf{Cats}}_{\mathsf{Sets},\mathsf{Sets},\mathsf{Sets}}} \]
- The Left Unitors. The natural isomorphism
\[ \lambda ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft (\mathbb {0}^{\mathsf{Sets}}\times \text{id}_{\mathsf{Sets}}\webright )} \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\lambda }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}} \]
- The Right Unitors. The natural isomorphism
\[ \rho ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\colon {\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}}\circ {\webleft ({\mathsf{id}}\times {\mathbb {0}^{\mathsf{Sets}}}\webright )}\mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}\mathbf{\rho }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}} \]
- The Symmetry. The natural isomorphism
\[ \sigma ^{\mathsf{Sets},\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}} \colon {\times } \mathbin {\overset {\mathord {\sim }}{\Longrightarrow }}{\times }\circ {\mathbf{\sigma }^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets},\mathsf{Sets}}} \]