3.2 The Monoidal Category of Sets and Coproducts

  • Subsection 3.2.1: Coproducts of Sets
  • Subsection 3.2.2: The Monoidal Unit
    • Definition 3.2.2.1.1: The Monoidal Unit of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
  • Subsection 3.2.3: The Associator
    • Definition 3.2.3.1.1: The Associator of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
  • Subsection 3.2.4: The Left Unitor
    • Definition 3.2.4.1.1: The Left Unitor of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
  • Subsection 3.2.5: The Right Unitor
    • Definition 3.2.5.1.1: The Right Unitor of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
  • Subsection 3.2.6: The Symmetry
    • Definition 3.2.6.1.1: The Symmetry of $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$
  • Subsection 3.2.7: The Monoidal Category of Sets and Coproducts
    • Proposition 3.2.7.1.1: The Monoidal Structure on Sets Associated to $\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}$

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: