-
Item (a): Compatibility With Strong Monoidality Constraints: We need to show that the diagram
commutes. Indeed, this diagram acts on elements as
and hence indeed commutes.
-
Item (b): Compatibility With Strong Unitality Constraints: As shown in the proof of Definition 3.1.5.1.1, the inverse of the left unitor of $\mathsf{Sets}$ with respect to to the product at $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ is given by
\[ \lambda ^{\mathsf{Sets},-1}_{X}\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (\star ,x\webright ) \]
for each $x\in X$, so when $X=\text{pt}$, we have
\[ \lambda ^{\mathsf{Sets},-1}_{\text{pt}}\webleft (\star \webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}{\webleft (\star ,\star \webright ),} \]
and also
\[ \Delta ^{\mathsf{Sets}}_{\text{pt}}\webleft (\star \webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}{\webleft (\star ,\star \webright ),} \]
so we have $\Delta _{\text{pt}}=\lambda ^{\mathsf{Sets},-1}_{\text{pt}}$.
This finishes the proof.