Let $X$ be a set.
-
Monoidality. The diagonal map
\[ \Delta \colon \text{id}_{\mathsf{Sets}}\Longrightarrow \mathord {\times }\circ {\Delta ^{\mathsf{Cats}_{\mathsf{2}}}_{\mathsf{Sets}}}, \]
is a monoidal natural transformation:
-
Compatibility With Strong Monoidality Constraints. For each $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the diagram
commutes.
-
Compatibility With Strong Unitality Constraints. The diagrams commute, i.e. we have
\begin{align*} \Delta _{\text{pt}} & = \lambda ^{\mathsf{Sets},-1}_{\text{pt}}\\ & = \rho ^{\mathsf{Sets},-1}_{\text{pt}}, \end{align*}
where we recall that the equalities
\begin{align*} \lambda ^{\mathsf{Sets}}_{\text{pt}} & = \rho ^{\mathsf{Sets}}_{\text{pt}},\\ \lambda ^{\mathsf{Sets},-1}_{\text{pt}} & = \rho ^{\mathsf{Sets},-1}_{\text{pt}}\end{align*}
-
Compatibility With Strong Monoidality Constraints. For each $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, the diagram
-
The Diagonal of the Unit. The component
\[ \Delta _{\text{pt}} \colon \text{pt}\overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\text{pt}\times \text{pt} \]
of $\Delta $ at $\text{pt}$ is an isomorphism.