2.2.5 Coequalisers

Let $A$ and $B$ be sets and let $f,g\colon A\rightrightarrows B$ be functions.

The coequaliser of $f$ and $g$ is the coequaliser of $f$ and $g$ in $\mathsf{Sets}$ as in , .

The coequaliser of $f$ and $g$ is the pair $\webleft (\text{CoEq}\webleft (f,g\webright ),\text{coeq}\webleft (f,g\webright )\webright )$ consisting of:

  1. The Colimit. The set $\text{CoEq}\webleft (f,g\webright )$ defined by
    \[ \text{CoEq}\webleft (f,g\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}B/\mathord {\sim }, \]

    where $\mathord {\sim }$ is the equivalence relation on $B$ generated by $f\webleft (a\webright )\sim g\webleft (a\webright )$.

  2. The Cocone. The map
    \[ \text{coeq}\webleft (f,g\webright )\colon B\to \text{CoEq}\webleft (f,g\webright ) \]

    given by the quotient map $\pi \colon B\twoheadrightarrow B/\mathord {\sim }$ with respect to the equivalence relation generated by $f\webleft (a\webright )\sim g\webleft (a\webright )$.

We claim that $\text{CoEq}\webleft (f,g\webright )$ is the categorical coequaliser of $f$ and $g$ in $\mathsf{Sets}$. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

\[ \text{coeq}\webleft (f,g\webright )\circ f=\text{coeq}\webleft (f,g\webright )\circ g. \]

Indeed, we have

\begin{align*} \webleft [\text{coeq}\webleft (f,g\webright )\circ f\webright ]\webleft (a\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\text{coeq}\webleft (f,g\webright )\webright ]\webleft (f\webleft (a\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [f\webleft (a\webright )\webright ]\\ & = \webleft [g\webleft (a\webright )\webright ]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\text{coeq}\webleft (f,g\webright )\webright ]\webleft (g\webleft (a\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\text{coeq}\webleft (f,g\webright )\circ g\webright ]\webleft (a\webright )\end{align*}

for each $a\in A$. Next, we prove that $\text{CoEq}\webleft (f,g\webright )$ satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

in $\mathsf{Sets}$. Then, since $c\webleft (f\webleft (a\webright )\webright )=c\webleft (g\webleft (a\webright )\webright )$ for each $a\in A$, it follows from , and of that there exists a unique map $\text{CoEq}\webleft (f,g\webright )\overset {\exists !}{\to }C$ making the diagram

commute.

In detail, by , , the relation $\mathord {\sim }$ of Definition 2.2.5.1.1 is given by declaring $a\sim b$ iff one of the following conditions is satisfied:

  • We have $a=b$;
  • There exist $x_{1},\ldots ,x_{n}\in B$ such that $a\sim 'x_{1}\sim '\cdots \sim 'x_{n}\sim 'b$, where we declare $x\sim 'y$ if one of the following conditions is satisfied:

    1. There exists $z\in A$ such that $x=f\webleft (z\webright )$ and $y=g\webleft (z\webright )$.
    2. There exists $z\in A$ such that $x=g\webleft (z\webright )$ and $y=f\webleft (z\webright )$.

    That is: we require the following condition to be satisfied:

    • There exist $x_{1},\ldots ,x_{n}\in B$ satisfying the following conditions:

      1. There exists $z_{0}\in A$ satisfying one of the following conditions:
        1. We have $a=f\webleft (z_{0}\webright )$ and $x_{1}=g\webleft (z_{0}\webright )$.
        2. We have $a=g\webleft (z_{0}\webright )$ and $x_{1}=f\webleft (z_{0}\webright )$.
      2. For each $1\leq i\leq n-1$, there exists $z_{i}\in A$ satisfying one of the following conditions:
        1. We have $x_{i}=f\webleft (z_{i}\webright )$ and $x_{i+1}=g\webleft (z_{i}\webright )$.
        2. We have $x_{i}=g\webleft (z_{i}\webright )$ and $x_{i+1}=f\webleft (z_{i}\webright )$.
      3. There exists $z_{n}\in A$ satisfying one of the following conditions:
        1. We have $x_{n}=f\webleft (z_{n}\webright )$ and $b=g\webleft (z_{n}\webright )$.
        2. We have $x_{n}=g\webleft (z_{n}\webright )$ and $b=f\webleft (z_{n}\webright )$.

Here are some examples of coequalisers of sets.

  1. Quotients by Equivalence Relations. Let $R$ be an equivalence relation on a set $X$. We have a bijection of sets
    \[ X/\mathord {\sim }_{R}\cong \text{CoEq}\webleft (R\hookrightarrow X\times X\underset {\text{pr}_{2}}{\overset {\text{pr}_{1}}{\rightrightarrows }}X\webright ). \]

Let $A$, $B$, and $C$ be sets.

  1. Associativity. We have isomorphisms of sets1
    \[ \underbrace{\text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ f,\text{coeq}\webleft (f,g\webright )\circ h\webright )}_{{}=\text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ g,\text{coeq}\webleft (f,g\webright )\circ h\webright )}\cong \text{CoEq}\webleft (f,g,h\webright ) \cong \underbrace{\text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ g\webright )}_{{}=\text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ h\webright )}, \]

    where $\text{CoEq}\webleft (f,g,h\webright )$ is the colimit of the diagram

    in $\mathsf{Sets}$.

  2. Unitality. We have an isomorphism of sets
    \[ \text{CoEq}\webleft (f,f\webright )\cong B. \]
  3. Commutativity. We have an isomorphism of sets
    \[ \text{CoEq}\webleft (f,g\webright ) \cong \text{CoEq}\webleft (g,f\webright ). \]
  4. Interaction With Composition. Let
    \[ A \underset {g}{\overset {f}{\rightrightarrows }} B \underset {k}{\overset {h}{\rightrightarrows }} C \]

    be functions. We have a surjection

    \[ \text{CoEq}\webleft (h\circ f,k\circ g\webright )\twoheadrightarrow \text{CoEq}\webleft (\text{coeq}\webleft (h,k\webright )\circ h\circ f,\text{coeq}\webleft (h,k\webright )\circ k\circ g\webright ) \]

    exhibiting $\text{CoEq}\webleft (\text{coeq}\webleft (h,k\webright )\circ h\circ f,\text{coeq}\webleft (h,k\webright )\circ k\circ g\webright )$ as a quotient of $\text{CoEq}\webleft (h\circ f,k\circ g\webright )$ by the relation generated by declaring $h\webleft (y\webright )\sim k\webleft (y\webright )$ for each $y\in B$.


1That is, the following three ways of forming “the” coequaliser of $\webleft (f,g,h\webright )$ agree:
  1. Take the coequaliser of $\webleft (f,g,h\webright )$, i.e. the colimit of the diagram

    in $\mathsf{Sets}$.

  2. First take the coequaliser of $f$ and $g$, forming a diagram

    \[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\text{coeq}\webleft (f,g\webright )}{\twoheadrightarrow }\text{CoEq}\webleft (f,g\webright ) \]

    and then take the coequaliser of the composition

    \[ A\underset {h}{\overset {f}{\rightrightarrows }}B\overset {\text{coeq}\webleft (f,g\webright )}{\twoheadrightarrow }\text{CoEq}\webleft (f,g\webright ), \]

    obtaining a quotient

    \[ \text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ f,\text{coeq}\webleft (f,g\webright )\circ h\webright )=\text{CoEq}\webleft (\text{coeq}\webleft (f,g\webright )\circ g,\text{coeq}\webleft (f,g\webright )\circ h\webright ) \]

    of $\text{CoEq}\webleft (f,g\webright )$
  3. First take the coequaliser of $g$ and $h$, forming a diagram

    \[ A\underset {h}{\overset {g}{\rightrightarrows }}B\overset {\text{coeq}\webleft (g,h\webright )}{\twoheadrightarrow }\text{CoEq}\webleft (g,h\webright ) \]

    and then take the coequaliser of the composition

    \[ A\underset {g}{\overset {f}{\rightrightarrows }}B\overset {\text{coeq}\webleft (g,h\webright )}{\twoheadrightarrow }\text{CoEq}\webleft (g,h\webright ), \]

    obtaining a quotient

    \[ \text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ g\webright )=\text{CoEq}\webleft (\text{coeq}\webleft (g,h\webright )\circ f,\text{coeq}\webleft (g,h\webright )\circ h\webright ) \]

    of $\text{CoEq}\webleft (g,h\webright )$.

Item 1: Associativity
Omitted.
Item 2: Unitality
Omitted.
Item 3: Commutativity
Omitted.
Item 4: Interaction With Composition
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: