2.2.6 Direct Colimits

Let $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}\colon \webleft (I,\preceq \webright )\to \mathsf{Top}$ be a direct system of sets.

The direct colimit of $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}$ is the direct colimit of $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}$ in $\mathsf{Sets}$ as in , .

The direct colimit of $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}$ is the pair $\smash {\Big(\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright ),\webleft\{ \mathrm{inj}_{\alpha }\webright\} _{\alpha \in I}\Big)}$ consisting of:

  1. The Colimit. The set $\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ defined by
    \[ \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\left.\webleft(\coprod _{\alpha \in I}X_{\alpha }\webright)\middle /\mathord {\sim }\right., \]

    where $\mathord {\sim }$ is the equivalence relation on $\coprod _{\alpha \in I}X_{\alpha }$ generated by declaring $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,y\webright )$ iff there exists some $\gamma \in I$ satisfying the following conditions:

    1. We have $\alpha \preceq \gamma $.
    2. We have $\beta \preceq \gamma $.
    3. We have $f_{\alpha \gamma }\webleft (x\webright )=f_{\beta \gamma }\webleft (y\webright )$.
  2. The Cocone.The collection
    \[ \webleft\{ \mathrm{inj}_{\gamma }\colon X_{\gamma }\to \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )\webright\} _{\gamma \in I} \]

    of maps of sets defined by

    \[ \mathrm{inj}_{\gamma }\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\gamma ,x\webright )\webright ] \]

    for each $\gamma \in I$ and each $x\in X_{\gamma }$.

We will prove Construction 2.2.6.1.2 below in a bit, but first we need a lemma (which is interesting in its own right).

For each $\alpha ,\beta \in I$ and each $x\in X_{\alpha }$, if $\alpha \preceq \beta $, then we have

\[ \webleft (\alpha ,x\webright )\sim \webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright ) \]

in $\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$.

Proof of Lemma 2.2.6.1.3.

Taking $\gamma =\beta $, we have $f_{\alpha \gamma }=f_{\alpha \beta }$, we have $f_{\beta \gamma }=f_{\beta \beta }\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{X_{\beta }}$, and we have

\begin{align*} f_{\alpha \beta }\webleft (x\webright ) & = f_{\beta \beta }\webleft (f_{\alpha \beta }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{X_{\beta }}\webleft (f_{\alpha \beta }\webleft (x\webright )\webright ),\\ & = f_{\alpha \beta }\webleft (x\webright ).\end{align*}

As a result, since $\alpha \preceq \beta $ and $\beta \preceq \beta $ as well, Item (a), Item (b), and Item (c) of Construction 2.2.6.1.2 are met. Thus we have $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright )$.

We can now prove Construction 2.2.6.1.2:

We claim that $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ is the colimit of the direct system of sets $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}$.

Commutativity of the Colimit Diagram
First, we need to check that the colimit diagram defined by $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ commutes, i.e. that we have
for each $\alpha ,\beta \in I$ with $\alpha \preceq \beta $. Indeed, given $x\in X_{\alpha }$, we have

\begin{align*} \webleft [\mathrm{inj}_{\beta }\circ f_{\alpha \beta }\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{inj}_{\beta }\webleft (f_{\alpha \beta }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright )\webright ]\\ & = \webleft [\webleft (\alpha ,x\webright )\webright ]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{inj}_{\alpha }\webleft (x\webright ), \end{align*}

where we have used Lemma 2.2.6.1.3 for the third equality.

Proof of the Universal Property of the Colimit
Next, we prove that $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ as constructed in Construction 2.2.6.1.2 satisfies the universal property of a direct colimit. Suppose that we have, for each $\alpha ,\beta \in I$ with $\alpha \preceq \beta $, a diagram of the form

in $\mathsf{Sets}$. We claim that there exists a unique map $\phi \colon \smash {\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )}\overset {\exists !}{\to }C$ making the diagram

commute. To this end, first consider the diagram

Lemma. If $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,y\webright )$, then we have

\[ \webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (x\webright )=\webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (y\webright ). \]

Proof. Indeed, if $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,y\webright )$, then there exists some $\gamma \in I$ satisfying the following conditions:

  1. We have $\alpha \preceq \gamma $.
  2. We have $\beta \preceq \gamma $.
  3. We have $f_{\alpha \gamma }\webleft (x\webright )=f_{\beta \gamma }\webleft (y\webright )$.

We then have

\begin{align*} \webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}i_{\alpha }\webleft (x\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [i_{\gamma }\circ f_{\alpha \gamma }\webright ]\webleft (x\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}i_{\gamma }\webleft (f_{\alpha \gamma }\webleft (x\webright )\webright )\\ & = i_{\gamma }\webleft (f_{\beta \gamma }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [i_{\gamma }\circ f_{\beta \gamma }\webright ]\webleft (x\webright )\\ & = i_{\beta }\webleft (y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (y\webright ). \end{align*}

This finishes the proof of the lemma. Continuing, by , of , there then exists a map $\phi \colon \smash {\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )}\overset {\exists !}{\to }C$ making the diagram

commute. In particular, this implies that the diagram

also commutes, and thus so does the diagram

This finishes the proof.1


1Incidentally, the conditions

\[ \webleft\{ i_{\alpha }=\phi \circ \mathrm{inj}_{\alpha }\webright\} _{\alpha \in I} \]

show that $\phi $ must be given by

\[ \phi \webleft (\webleft [\webleft (\alpha ,x\webright )\webright ]\webright )=\webleft (i_{\alpha }\webleft (x\webright )\webright )_{\alpha \in I} \]

for each $\webleft [\webleft (\alpha ,x\webright )\webright ]\in \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$, although we would need to show that this assignment is well-defined were we to prove Construction 2.2.6.1.2 in this way. Instead, invoking , of gave us a way to avoid having to prove this, leading to a cleaner alternative proof.

Here are some examples of direct colimits of sets.

  1. The Prüfer Group. The Prüfer group $\mathbb {Z}\webleft (p^{\infty }\webright )$ is defined as the direct colimit
    \[ \mathbb {Z}\webleft (p^{\infty }\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{n\in \mathbb {N}}\webleft (\mathbb {Z}_{/p^{n}}\webright ); \]

    see .


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: