For each $\alpha ,\beta \in I$ and each $x\in X_{\alpha }$, if $\alpha \preceq \beta $, then we have
\[ \webleft (\alpha ,x\webright )\sim \webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright ) \]
in $\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$.
Taking $\gamma =\beta $, we have $f_{\alpha \gamma }=f_{\alpha \beta }$, we have $f_{\beta \gamma }=f_{\beta \beta }\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{X_{\beta }}$, and we have
\begin{align*} f_{\alpha \beta }\webleft (x\webright ) & = f_{\beta \beta }\webleft (f_{\alpha \beta }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{id}_{X_{\beta }}\webleft (f_{\alpha \beta }\webleft (x\webright )\webright ),\\ & = f_{\alpha \beta }\webleft (x\webright ).\end{align*}
As a result, since $\alpha \preceq \beta $ and $\beta \preceq \beta $ as well, Item (a), Item (b), and Item (c) of Construction 2.2.6.1.2 are met. Thus we have $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright )$.
We claim that $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ is the colimit of the direct system of sets $\webleft (X_{\alpha },f_{\alpha \beta }\webright )_{\alpha ,\beta \in I}$.
Commutativity of the Colimit Diagram
First, we need to check that the colimit diagram defined by $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ commutes, i.e. that we have for each $\alpha ,\beta \in I$ with $\alpha \preceq \beta $. Indeed, given $x\in X_{\alpha }$, we have
\begin{align*} \webleft [\mathrm{inj}_{\beta }\circ f_{\alpha \beta }\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{inj}_{\beta }\webleft (f_{\alpha \beta }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft (\beta ,f_{\alpha \beta }\webleft (x\webright )\webright )\webright ]\\ & = \webleft [\webleft (\alpha ,x\webright )\webright ]\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathrm{inj}_{\alpha }\webleft (x\webright ), \end{align*}
where we have used Lemma 2.2.6.1.3 for the third equality.
Proof of the Universal Property of the Colimit
Next, we prove that $\operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )$ as constructed in Construction 2.2.6.1.2 satisfies the universal property of a direct colimit. Suppose that we have, for each $\alpha ,\beta \in I$ with $\alpha \preceq \beta $, a diagram of the form
in $\mathsf{Sets}$. We claim that there exists a unique map $\phi \colon \smash {\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )}\overset {\exists !}{\to }C$ making the diagram
commute. To this end, first consider the diagram
Lemma. If $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,y\webright )$, then we have
\[ \webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (x\webright )=\webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (y\webright ). \]
Proof. Indeed, if $\webleft (\alpha ,x\webright )\sim \webleft (\beta ,y\webright )$, then there exists some $\gamma \in I$ satisfying the following conditions:
-
We have $\alpha \preceq \gamma $.
-
We have $\beta \preceq \gamma $.
-
We have $f_{\alpha \gamma }\webleft (x\webright )=f_{\beta \gamma }\webleft (y\webright )$.
We then have
\begin{align*} \webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}i_{\alpha }\webleft (x\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [i_{\gamma }\circ f_{\alpha \gamma }\webright ]\webleft (x\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}i_{\gamma }\webleft (f_{\alpha \gamma }\webleft (x\webright )\webright )\\ & = i_{\gamma }\webleft (f_{\beta \gamma }\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [i_{\gamma }\circ f_{\beta \gamma }\webright ]\webleft (x\webright )\\ & = i_{\beta }\webleft (y\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[\coprod _{\alpha \in I}i_{\alpha }\webright]\webleft (y\webright ). \end{align*}
This finishes the proof of the lemma. Continuing, by , of , there then exists a map $\phi \colon \smash {\displaystyle \operatorname*{{\displaystyle \underset {\longrightarrow }{\operatorname*{\text{colim}}}}}_{\alpha \in I}\webleft (X_{\alpha }\webright )}\overset {\exists !}{\to }C$ making the diagram
commute. In particular, this implies that the diagram
also commutes, and thus so does the diagram
This finishes the proof.1