• Adjointness. We have adjunctions
    where
    \[ \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (-_{1},-_{2}\webright )\colon \mathcal{P}\webleft (X\webright )\mkern -0.0mu^{\mathsf{op}}\times \mathcal{P}\webleft (X\webright ) \to \mathcal{P}\webleft (X\webright ) \]

    is the bifunctor defined by[1]

    \[ \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus U\webright )\cup V \]

    witnessed by bijections

    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,W\webright )\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,W\webright )\webright ), \end{align*}

    natural in $U,V,W\in \mathcal{P}\webleft (X\webright )$, i.e. where:

    1. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $U\subset \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,W\webright )$.
      3. We have $U\subset \webleft (X\setminus V\webright )\cup W$.
    2. The following conditions are equivalent:
      1. We have $V\cap U\subset W$.
      2. We have $V\subset \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,W\webright )$.
      3. We have $V\subset \webleft (X\setminus U\webright )\cup W$.

Footnotes

[1] For intuition regarding the expression defining $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )$, see Remark 2.3.9.1.3.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: