Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.
Since $\mathcal{P}\webleft (X\webright )$ is posetal, it suffices to prove Item (a), Item (b), and Item (c).
-
Proof of Item (a): We have
\begin{align*} \webleft [A,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}, \end{align*}
where we have used:
-
Item 1 of Proposition 2.3.11.1.2, which states that if $U\subset A$, then $A^{\textsf{c}}\subset U^{\textsf{c}}$.
-
Item (a) of Item 1 of Proposition 2.3.11.1.2, which states that if $A^{\textsf{c}}\subset U^{\textsf{c}}$, then $A^{\textsf{c}}\cup K\subset U^{\textsf{c}}\cup K$ for any $K\in \mathcal{P}\webleft (X\webright )$.
-
Proof of Item (b): We have
\begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup B\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,B\webright ]_{X}, \end{align*}
where we have used Item (b) of Item 1 of Proposition 2.3.11.1.2, which states that if $V\subset B$, then $K\cup V\subset K\cup B$ for any $K\in \mathcal{P}\webleft (X\webright )$.
-
Proof of Item (c): We have
\begin{align*} \webleft [A,V\webright ]_{X} & \subset \webleft [U,V\webright ]_{X}\\ & \subset \webleft [U,B\webright ]_{X}, \end{align*}
where we have used Item (a) and Item (b).
This finishes the proof.
This is a repetition of Item 2 of Proposition 2.3.9.1.2 and is proved there.
Item 3: Interaction With the Empty Set I
We have
\begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \text{Ø}\\ & = U^{\textsf{c}}, \end{align*}
where we have used Item 3 of Proposition 2.3.8.1.2, and we have
\begin{align*} \webleft [\text{Ø},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \text{Ø}\webright )\cup V\\ & = X\cup V\\ & = X, \end{align*}
where we have used:
-
Item 12 of Proposition 2.3.10.1.2 for the first equality.
-
Item 5 of Proposition 2.3.8.1.2 for the last equality.
Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic ().
We have
\begin{align*} \webleft [U,X\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup X\\ & = X, \end{align*}
where we have used Item 5 of Proposition 2.3.8.1.2, and we have
\begin{align*} \webleft [X,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus X\webright )\cup V\\ & = \text{Ø}\cup V\\ & = V, \end{align*}
where we have used Item 3 of Proposition 2.3.8.1.2 for the last equality. Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic ().
Item 5: Interaction With the Empty Set II
We have
\begin{align*} D_{X}\webleft (D_{X}\webleft (U\webright )\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\\ & = \webleft [U^{\textsf{c}},\text{Ø}\webright ]_{X}\\ & = \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U, \end{align*}
where we have used:
-
Item 3 for the second and third equalities.
-
Item 3 of Proposition 2.3.11.1.2 for the fourth equality.
Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (), and thus we have
\[ \webleft [\webleft [-,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\cong \text{id}_{\mathcal{P}\webleft (X\webright )} \]
This finishes the proof.
Item 6: Interaction With the Empty Set III
Since $D_{X}=\webleft (-\webright )^{\textsf{c}}$, this is essentially a repetition of the corresponding results for $\webleft (-\webright )^{\textsf{c}}$, namely Item 5, Item 6, and Item 7 of Proposition 2.3.11.1.2.
Item 7: Interaction With Unions of Families of Subsets I
By Item 3 of Proposition 2.4.7.1.3, we have
\begin{align*} \webleft [\mathcal{U},\text{Ø}\webright ]_{\mathcal{P}\webleft (X\webright )} & = \mathcal{U}^{\textsf{c}},\\ \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}}. \end{align*}
With this, the counterexample given in the proof of Item 10 of Proposition 2.3.6.1.2 then applies.
Item 8: Interaction With Unions of Families of Subsets II
We have
\begin{align*} \webleft[\bigcup _{U\in \mathcal{U}}U,V\webright]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft(\bigcup _{U\in \mathcal{U}}U\webright)^{\textsf{c}}\cup V\\ & = \webleft(\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}\webright)\cup V\\ & = \bigcap _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}
where we have used:
-
Item 11 of Proposition 2.3.6.1.2 for the second equality.
-
Item 6 of Proposition 2.3.7.1.2 for the third equality.
This finishes the proof.
Item 9: Interaction With Unions of Families of Subsets III
We have
\begin{align*} \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \webleft(\bigcup _{V\in \mathcal{V}}V\webright)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[U,\bigcup _{V\in \mathcal{V}}V\webright]_{X}. \end{align*}
where we have used Item 6. This finishes the proof.
Item 10: Interaction With Intersections of Families of Subsets I
Let $X=\webleft\{ 0,1\webright\} $, let $\mathcal{U}=\webleft\{ \webleft\{ 0,1\webright\} \webright\} $, and let $\mathcal{V}=\webleft\{ \webleft\{ 0\webright\} ,\webleft\{ 0,1\webright\} \webright\} $. We have
\begin{align*} \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W & = \bigcap _{W\in \mathcal{P}\webleft (X\webright )}W\\ & = \webleft\{ 0,1\webright\} , \end{align*}
whereas
\begin{align*} \webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X} & = \webleft [\webleft\{ 0,1\webright\} ,\webleft\{ 0\webright\} \webright ]\\ & = \webleft\{ 0\webright\} , \end{align*}
Thus we have
\[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W=\webleft\{ 0,1\webright\} \neq \webleft\{ 0\webright\} =\webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}. \]
This finishes the proof.
Item 11: Interaction With Intersections of Families of Subsets II
We have
\begin{align*} \webleft[\bigcap _{U\in \mathcal{U}}U,V\webright]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft(\bigcap _{U\in \mathcal{U}}U\webright)^{\textsf{c}}\cup V\\ & = \webleft(\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}\webright)\cup V\\ & = \bigcup _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}
where we have used:
-
Item 12 of Proposition 2.3.6.1.2 for the second equality.
-
Item 6 of Proposition 2.3.7.1.2 for the third equality.
This finishes the proof.
Item 12: Interaction With Intersections of Families of Subsets III
We have
\begin{align*} \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \webleft(\bigcap _{V\in \mathcal{V}}V\webright)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}. \end{align*}
where we have used Item 6. This finishes the proof.
Item 13: Interaction With Binary Unions
We have
\begin{align*} \webleft [U\cap V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cap V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X}, \end{align*}
where we have used:
-
Item 2 of Proposition 2.3.11.1.2 for the second equality.
-
Item 8 of Proposition 2.3.8.1.2 for the third equality.
-
Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the fourth equality.
For the second equality in the statement, we have
\begin{align*} \webleft [U,V\cap W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cap W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cap \webleft (U^{\textsf{c}}\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X}, \end{align*}
where we have used Item 6 of Proposition 2.3.8.1.2 for the second equality.
Item 14: Interaction With Binary Intersections
We have
\begin{align*} \webleft [U\cup V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cup V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cap V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cap \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X}, \end{align*}
where we have used:
-
Item 2 of Proposition 2.3.11.1.2 for the second equality.
-
Item 6 of Proposition 2.3.8.1.2 for the third equality.
Now, for the second equality in the statement, we have
\begin{align*} \webleft [U,V\cup W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cup \webleft (U^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X}, \end{align*}
where we have used:
-
Item 8 of Proposition 2.3.8.1.2 for the second equality.
-
Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the third equality.
This finishes the proof.
Item 15: Interaction With Differences
We have
\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X}, \end{align*}
where we have used:
-
Item 10 of Proposition 2.3.10.1.2 for the third equality.
-
Item 4 of Proposition 2.3.9.1.2 for the fourth equality.
-
Item 8 of Proposition 2.3.8.1.2 for the sixth equality.
-
Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the seventh equality.
We also have
\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (\webleft (V^{\textsf{c}}\webright )^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}, \end{align*}
where we have used:
-
Item 10 of Proposition 2.3.10.1.2 for the third equality.
-
Item 4 of Proposition 2.3.9.1.2 for the fourth equality.
-
Item 8 of Proposition 2.3.8.1.2 for the sixth equality.
-
Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the seventh equality.
-
Item 3 of Proposition 2.3.11.1.2 for the eighth equality.
Now, for the second equality in the statement, we have
\begin{align*} \webleft [U,V\setminus W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\setminus W\webright )\\ & = \webleft (V\setminus W\webright )\cup U^{\textsf{c}}\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus U^{\textsf{c}}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus \webleft (X\setminus U\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \webleft (W\setminus X\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \text{Ø}\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\cap U\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (U\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright ) \end{align*}
where we have used:
-
Item 4 of Proposition 2.3.8.1.2 for the second equality.
-
Item 4 of Proposition 2.3.10.1.2 for the third equality.
-
Item 10 of Proposition 2.3.10.1.2 for the fifth equality.
-
Item 13 of Proposition 2.3.10.1.2 for the sixth equality.
-
Item 3 of Proposition 2.3.8.1.2 for the seventh equality.
-
Item 5 of Proposition 2.3.9.1.2 for the eighth equality.
This finishes the proof.
Item 16: Interaction With Complements
We have
\begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\cup V,\\ & = U\cup V, \end{align*}
where we have used Item 3 of Proposition 2.3.11.1.2. We also have
\begin{align*} \webleft [U,V^{\textsf{c}}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V^{\textsf{c}}\\ & = U\cap V\\ \end{align*}
where we have used Item 2 of Proposition 2.3.11.1.2. Finally, we have
\begin{align*} \webleft [U,V\webright ]^{\textsf{c}}_{X} & = \webleft (\webleft (U\setminus V\webright )^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U\setminus V, \end{align*}
where we have used Item 2 of Proposition 2.3.11.1.2.
Item 17: Interaction With Characteristic Functions
We have
\begin{align*} \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{U^{\textsf{c}}\cup V}\webleft (x\webright )\\ & = \operatorname*{\text{max}}\webleft (\chi _{U^{\textsf{c}}},\chi _{V}\webright )\\ & = \operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ), \end{align*}
where we have used:
-
Item 10 of Proposition 2.3.8.1.2 for the second equality.
-
Item 4 of Proposition 2.3.11.1.2 for the third equality.
This finishes the proof.
Item 18: Interaction With Direct Images
This is a repetition of Item 10 of Proposition 2.6.1.1.4 and is proved there.
Item 19: Interaction With Inverse Images
This is a repetition of Item 10 of Proposition 2.6.2.1.3 and is proved there.
Item 20: Interaction With Direct Images With Compact Support
This is a repetition of Item 9 of Proposition 2.6.3.1.6 and is proved there.