2.4.7 The Internal Hom of a Powerset

Let $X$ be a set and let $U,V\in \mathcal{P}\webleft (X\webright )$.

The internal Hom of $\mathcal{P}\webleft (X\webright )$ from $U$ to $V$ is the subset $\webleft [U,V\webright ]_{X}$1 of $X$ defined by

\begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & = \webleft (U\setminus V\webright )^{\textsf{c}}\end{align*}

where $U^{\textsf{c}}$ is the complement of $U$ of Definition 2.3.11.1.1.


1Further Notation: Also written $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )$.

We have

\begin{align*} \webleft (U\setminus V\webright )^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \webleft (U\setminus V\webright )\\ & = \webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\\ & = V\cup \webleft (X\setminus U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}V\cup U^{\textsf{c}}\\ & = U^{\textsf{c}}\cup V,\end{align*}

where we have used:

  1. Item 10 of Proposition 2.3.10.1.2 for the second equality.
  2. Item 4 of Proposition 2.3.9.1.2 for the third equality.
  3. Item 4 of Proposition 2.3.8.1.2 for the last equality.

This finishes the proof.

Henning Makholm suggests the following heuristic intuition for the internal Hom of $\mathcal{P}\webleft (X\webright )$ from $U$ to $V$ ([MSE 267365]):

  1. Since products in $\mathcal{P}\webleft (X\webright )$ are given by binary intersections (Item 1 of Proposition 2.4.1.1.4), the right adjoint $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,-\webright )$ of $U\cap -$ may be thought of as a function type $\webleft [U,V\webright ]$.
  2. Under the Curry–Howard correspondence (), the function type $\webleft [U,V\webright ]$ corresponds to implication $U\Longrightarrow V$.
  3. Implication $U\Rightarrow V$ is logically equivalent to $\neg U\vee V$.
  4. The expression $\neg U\vee V$ then corresponds to the set $U^{\textsf{c}}\cup V$ in $\mathcal{P}\webleft (X\webright )$.
  5. The set $U^{\textsf{c}}\vee V$ turns out to indeed be the internal Hom of $\mathcal{P}\webleft (X\webright )$.

Let $X$ be a set.

  1. Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}$ define functors
    \[ \begin{array}{ccc} {\webleft [U,-\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-,V\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-_{1},-_{2}\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )}. \end{array} \]

    In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:

    1. If $U\subset A$, then $\webleft [A,V\webright ]_{X}\subset \webleft [U,V\webright ]_{X}$.
    2. If $V\subset B$, then $\webleft [U,V\webright ]_{X}\subset \webleft [U,B\webright ]_{X}$.
    3. If $U\subset A$ and $V\subset B$, then $\webleft [A,V\webright ]_{X}\subset \webleft [U,B\webright ]_{X}$.
  2. Adjointness. We have adjunctions
    witnessed by bijections
    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\webleft [V,W\webright ]_{X}\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\webleft [U,W\webright ]_{X}\webright ). \end{align*}

    In particular, the following statements hold for each $U,V,W\in \mathcal{P}\webleft (X\webright )$:

    1. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $U\subset \webleft [V,W\webright ]_{X}$.
    2. The following conditions are equivalent:
      1. We have $U\cap V\subset W$.
      2. We have $V\subset \webleft [U,W\webright ]_{X}$.
  3. Interaction With the Empty Set I. We have
    \begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}},\\ \webleft [\text{Ø},V\webright ]_{X} & = X, \end{align*}

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  4. Interaction With $X$. We have
    \begin{align*} \webleft [U,X\webright ]_{X} & = X,\\ \webleft [X,V\webright ]_{X} & = V, \end{align*}

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  5. Interaction With the Empty Set II. The functor
    \[ D_{X} \colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ) \]

    defined by

    \begin{align*} D_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [-,\text{Ø}\webright ]_{X}\\ & = \webleft (-\webright )^{\textsf{c}}\end{align*}

    is an involutory isomorphism of categories, making $\text{Ø}$ into a dualising object for $\webleft (\mathcal{P}\webleft (X\webright ),\cap ,X,\webleft [-,-\webright ]_{X}\webright )$ in the sense of . In particular:

    1. The diagram

      commutes, i.e. we have

      \[ \underbrace{D_{X}\webleft (D_{X}\webleft (U\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=U \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    2. The diagram

      commutes, i.e. we have

      \[ \underbrace{D_{X}\webleft (U\cap D_{X}\webleft (V\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U\cap \webleft [V,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=\webleft [U,V\webright ]_{X} \]

      for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.
    1. Interaction With Direct Images. The diagram

      commutes, i.e. we have

      \[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    2. Interaction With Inverse Images. The diagram

      commutes, i.e. we have

      \[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

    3. Interaction With Direct Images With Compact Support. The diagram

      commutes, i.e. we have

      \[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]

      for each $U\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Unions of Families of Subsets I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcup _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \webleft[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\webright]_{X} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  8. Interaction With Unions of Families of Subsets II. The diagram

    commutes, i.e. we have

    \[ \webleft[\bigcup _{U\in \mathcal{U}}U,V\webright]_{X}= \bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Unions of Families of Subsets III. The diagram

    commutes, i.e. we have

    \[ \webleft[U,\bigcup _{V\in \mathcal{V}}V\webright]_{X}= \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  10. Interaction With Intersections of Families of Subsets I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  11. Interaction With Intersections of Families of Subsets II. The diagram

    commutes, i.e. we have

    \[ \webleft[\bigcap _{U\in \mathcal{U}}U,V\webright]_{X}= \bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

  12. Interaction With Intersections of Families of Subsets III. The diagram

    commutes, i.e. we have

    \[ \webleft[U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}= \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  13. Interaction With Binary Unions. We have equalities of sets
    \begin{align*} \webleft [U\cap V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cap W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X} \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  14. Interaction With Binary Intersections. We have equalities of sets
    \begin{align*} \webleft [U\cup V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cup W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X} \end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  15. Interaction With Differences. We have equalities of sets
    \begin{align*} \webleft [U\setminus V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}\\ & = \webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X},\\ \webleft [U,V\setminus W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright )\end{align*}

    for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.

  16. Interaction With Complements. We have equalities of sets
    \begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & = U\cup V,\\ \webleft [U,V^{\textsf{c}}\webright ]_{X} & = U\cap V,\\ \webleft [U,V\webright ]^{\textsf{c}}_{X} & = U\setminus V \end{align*}

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  17. Interaction With Characteristic Functions. We have
    \[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright )=\operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  18. Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have an equality of sets

    \[ f_{*}\webleft (\webleft [U,V\webright ]_{X}\webright )=\webleft [f_{!}\webleft (U\webright ),f_{*}\webleft (V\webright )\webright ]_{Y}, \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  19. Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram

    commutes, i.e. we have an equality of sets

    \[ f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright )=\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X}, \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  20. Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ \webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}\subset f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
Since $\mathcal{P}\webleft (X\webright )$ is posetal, it suffices to prove Item (a), Item (b), and Item (c).
  1. Proof of Item (a): We have
    \begin{align*} \webleft [A,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}A^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}, \end{align*}

    where we have used:

    1. Item 1 of Proposition 2.3.11.1.2, which states that if $U\subset A$, then $A^{\textsf{c}}\subset U^{\textsf{c}}$.
    2. Item (a) of Item 1 of Proposition 2.3.11.1.2, which states that if $A^{\textsf{c}}\subset U^{\textsf{c}}$, then $A^{\textsf{c}}\cup K\subset U^{\textsf{c}}\cup K$ for any $K\in \mathcal{P}\webleft (X\webright )$.
  2. Proof of Item (b): We have
    \begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & \subset U^{\textsf{c}}\cup B\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,B\webright ]_{X}, \end{align*}

    where we have used Item (b) of Item 1 of Proposition 2.3.11.1.2, which states that if $V\subset B$, then $K\cup V\subset K\cup B$ for any $K\in \mathcal{P}\webleft (X\webright )$.

  3. Proof of Item (c): We have
    \begin{align*} \webleft [A,V\webright ]_{X} & \subset \webleft [U,V\webright ]_{X}\\ & \subset \webleft [U,B\webright ]_{X}, \end{align*}

    where we have used Item (a) and Item (b).

This finishes the proof.

Item 2: Adjointness
This is a repetition of Item 2 of Proposition 2.3.9.1.2 and is proved there.
Item 3: Interaction With the Empty Set I
We have

\begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \text{Ø}\\ & = U^{\textsf{c}}, \end{align*}

where we have used Item 3 of Proposition 2.3.8.1.2, and we have

\begin{align*} \webleft [\text{Ø},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ø}^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \text{Ø}\webright )\cup V\\ & = X\cup V\\ & = X, \end{align*}

where we have used:

  1. Item 12 of Proposition 2.3.10.1.2 for the first equality.
  2. Item 5 of Proposition 2.3.8.1.2 for the last equality.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic ().

Item 4: Interaction With $X$
We have
\begin{align*} \webleft [U,X\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup X\\ & = X, \end{align*}

where we have used Item 5 of Proposition 2.3.8.1.2, and we have

\begin{align*} \webleft [X,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X^{\textsf{c}}\cup V\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus X\webright )\cup V\\ & = \text{Ø}\cup V\\ & = V, \end{align*}

where we have used Item 3 of Proposition 2.3.8.1.2 for the last equality. Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic ().

Item 5: Interaction With the Empty Set II
We have
\begin{align*} D_{X}\webleft (D_{X}\webleft (U\webright )\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\\ & = \webleft [U^{\textsf{c}},\text{Ø}\webright ]_{X}\\ & = \webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U, \end{align*}

where we have used:

  1. Item 3 for the second and third equalities.
  2. Item 3 of Proposition 2.3.11.1.2 for the fourth equality.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (), and thus we have

\[ \webleft [\webleft [-,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}\cong \text{id}_{\mathcal{P}\webleft (X\webright )} \]

This finishes the proof.

Item 6: Interaction With the Empty Set III
Since $D_{X}=\webleft (-\webright )^{\textsf{c}}$, this is essentially a repetition of the corresponding results for $\webleft (-\webright )^{\textsf{c}}$, namely Item 5, Item 6, and Item 7 of Proposition 2.3.11.1.2.
Item 7: Interaction With Unions of Families of Subsets I
By Item 3 of Proposition 2.4.7.1.3, we have

\begin{align*} \webleft [\mathcal{U},\text{Ø}\webright ]_{\mathcal{P}\webleft (X\webright )} & = \mathcal{U}^{\textsf{c}},\\ \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}}. \end{align*}

With this, the counterexample given in the proof of Item 10 of Proposition 2.3.6.1.2 then applies.

Item 8: Interaction With Unions of Families of Subsets II
We have
\begin{align*} \webleft[\bigcup _{U\in \mathcal{U}}U,V\webright]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft(\bigcup _{U\in \mathcal{U}}U\webright)^{\textsf{c}}\cup V\\ & = \webleft(\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}\webright)\cup V\\ & = \bigcap _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}

where we have used:

  1. Item 11 of Proposition 2.3.6.1.2 for the second equality.
  2. Item 6 of Proposition 2.3.7.1.2 for the third equality.

This finishes the proof.

Item 9: Interaction With Unions of Families of Subsets III
We have
\begin{align*} \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \webleft(\bigcup _{V\in \mathcal{V}}V\webright)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[U,\bigcup _{V\in \mathcal{V}}V\webright]_{X}. \end{align*}

where we have used Item 6. This finishes the proof.

Item 10: Interaction With Intersections of Families of Subsets I
Let $X=\webleft\{ 0,1\webright\} $, let $\mathcal{U}=\webleft\{ \webleft\{ 0,1\webright\} \webright\} $, and let $\mathcal{V}=\webleft\{ \webleft\{ 0\webright\} ,\webleft\{ 0,1\webright\} \webright\} $. We have
\begin{align*} \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W & = \bigcap _{W\in \mathcal{P}\webleft (X\webright )}W\\ & = \webleft\{ 0,1\webright\} , \end{align*}

whereas

\begin{align*} \webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X} & = \webleft [\webleft\{ 0,1\webright\} ,\webleft\{ 0\webright\} \webright ]\\ & = \webleft\{ 0\webright\} , \end{align*}

Thus we have

\[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W=\webleft\{ 0,1\webright\} \neq \webleft\{ 0\webright\} =\webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}. \]

This finishes the proof.

Item 11: Interaction With Intersections of Families of Subsets II
We have
\begin{align*} \webleft[\bigcap _{U\in \mathcal{U}}U,V\webright]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft(\bigcap _{U\in \mathcal{U}}U\webright)^{\textsf{c}}\cup V\\ & = \webleft(\bigcup _{U\in \mathcal{U}}U^{\textsf{c}}\webright)\cup V\\ & = \bigcup _{U\in \mathcal{U}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X},\end{align*}

where we have used:

  1. Item 12 of Proposition 2.3.6.1.2 for the second equality.
  2. Item 6 of Proposition 2.3.7.1.2 for the third equality.

This finishes the proof.

Item 12: Interaction With Intersections of Families of Subsets III
We have
\begin{align*} \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{V\in \mathcal{V}}\webleft (U^{\textsf{c}}\cup V\webright )\\ & = U^{\textsf{c}}\cup \webleft(\bigcap _{V\in \mathcal{V}}V\webright)\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft[U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}. \end{align*}

where we have used Item 6. This finishes the proof.

Item 13: Interaction With Binary Unions
We have
\begin{align*} \webleft [U\cap V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cap V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup V^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X}, \end{align*}

where we have used:

  1. Item 2 of Proposition 2.3.11.1.2 for the second equality.
  2. Item 8 of Proposition 2.3.8.1.2 for the third equality.
  3. Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the fourth equality.

For the second equality in the statement, we have

\begin{align*} \webleft [U,V\cap W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cap W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cap \webleft (U^{\textsf{c}}\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X}, \end{align*}

where we have used Item 6 of Proposition 2.3.8.1.2 for the second equality.

Item 14: Interaction With Binary Intersections
We have
\begin{align*} \webleft [U\cup V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\cup V\webright )^{\textsf{c}}\cup W\\ & = \webleft (U^{\textsf{c}}\cap V^{\textsf{c}}\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cap \webleft (V^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X}, \end{align*}

where we have used:

  1. Item 2 of Proposition 2.3.11.1.2 for the second equality.
  2. Item 6 of Proposition 2.3.8.1.2 for the third equality.

Now, for the second equality in the statement, we have

\begin{align*} \webleft [U,V\cup W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup V\webright )\cup \webleft (U^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X}, \end{align*}

where we have used:

  1. Item 8 of Proposition 2.3.8.1.2 for the second equality.
  2. Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the third equality.

This finishes the proof.

Item 15: Interaction With Differences
We have
\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup \webleft (U^{\textsf{c}}\cup U^{\textsf{c}}\webright )\webright )\cup W\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X}, \end{align*}

where we have used:

  1. Item 10 of Proposition 2.3.10.1.2 for the third equality.
  2. Item 4 of Proposition 2.3.9.1.2 for the fourth equality.
  3. Item 8 of Proposition 2.3.8.1.2 for the sixth equality.
  4. Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the seventh equality.

We also have

\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U\setminus V\webright )^{\textsf{c}}\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (X\setminus \webleft (U\setminus V\webright )\webright )\cup W\\ & = \webleft (\webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & = \webleft (V\cup \webleft (X\setminus U\webright )\webright )\cup W\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\cup W\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\cup \webleft (W\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (V\cup W\webright )\\ & = \webleft (U^{\textsf{c}}\cup W\webright )\cup \webleft (\webleft (V^{\textsf{c}}\webright )^{\textsf{c}}\cup W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}, \end{align*}

where we have used:

  1. Item 10 of Proposition 2.3.10.1.2 for the third equality.
  2. Item 4 of Proposition 2.3.9.1.2 for the fourth equality.
  3. Item 8 of Proposition 2.3.8.1.2 for the sixth equality.
  4. Several applications of Item 2 and Item 4 of Proposition 2.3.8.1.2 and for the seventh equality.
  5. Item 3 of Proposition 2.3.11.1.2 for the eighth equality.

Now, for the second equality in the statement, we have

\begin{align*} \webleft [U,V\setminus W\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup \webleft (V\setminus W\webright )\\ & = \webleft (V\setminus W\webright )\cup U^{\textsf{c}}\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus U^{\textsf{c}}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\setminus \webleft (X\setminus U\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \webleft (W\setminus X\webright )\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (\webleft (W\cap U\webright )\cup \text{Ø}\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (W\cap U\webright )\\ & = \webleft (V\cup U^{\textsf{c}}\webright )\setminus \webleft (U\cap W\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright ) \end{align*}

where we have used:

  1. Item 4 of Proposition 2.3.8.1.2 for the second equality.
  2. Item 4 of Proposition 2.3.10.1.2 for the third equality.
  3. Item 10 of Proposition 2.3.10.1.2 for the fifth equality.
  4. Item 13 of Proposition 2.3.10.1.2 for the sixth equality.
  5. Item 3 of Proposition 2.3.8.1.2 for the seventh equality.
  6. Item 5 of Proposition 2.3.9.1.2 for the eighth equality.

This finishes the proof.

Item 16: Interaction With Complements
We have
\begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\cup V,\\ & = U\cup V, \end{align*}

where we have used Item 3 of Proposition 2.3.11.1.2. We also have

\begin{align*} \webleft [U,V^{\textsf{c}}\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V^{\textsf{c}}\\ & = U\cap V\\ \end{align*}

where we have used Item 2 of Proposition 2.3.11.1.2. Finally, we have

\begin{align*} \webleft [U,V\webright ]^{\textsf{c}}_{X} & = \webleft (\webleft (U\setminus V\webright )^{\textsf{c}}\webright )^{\textsf{c}}\\ & = U\setminus V, \end{align*}

where we have used Item 2 of Proposition 2.3.11.1.2.

Item 17: Interaction With Characteristic Functions
We have
\begin{align*} \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{U^{\textsf{c}}\cup V}\webleft (x\webright )\\ & = \operatorname*{\text{max}}\webleft (\chi _{U^{\textsf{c}}},\chi _{V}\webright )\\ & = \operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ), \end{align*}

where we have used:

  1. Item 10 of Proposition 2.3.8.1.2 for the second equality.
  2. Item 4 of Proposition 2.3.11.1.2 for the third equality.

This finishes the proof.

Item 18: Interaction With Direct Images
This is a repetition of Item 10 of Proposition 2.6.1.1.4 and is proved there.
Item 19: Interaction With Inverse Images
This is a repetition of Item 10 of Proposition 2.6.2.1.3 and is proved there.

Item 20: Interaction With Direct Images With Compact Support
This is a repetition of Item 9 of Proposition 2.6.3.1.6 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: