Let $f\colon X\to Y$ be a function.

  1. Functoriality. The assignment $U\mapsto f_{!}\webleft (U\webright )$ defines a functor
    \[ f_{!}\colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright ). \]

    In particular, for each $U,V\in \mathcal{P}\webleft (X\webright )$, the following condition is satisfied:

    • If $U\subset V$, then $f_{!}\webleft (U\webright )\subset f_{!}\webleft (V\webright )$.

  2. Triple Adjointness. We have a triple adjunction
    witnessed by:
    1. Units and counits of the form
      \[ \begin{aligned} \text{id}_{\mathcal{P}\webleft (X\webright )} & \hookrightarrow f^{-1}\circ f_{*},\\ f_{*}\circ f^{-1} & \hookrightarrow \text{id}_{\mathcal{P}\webleft (Y\webright )},\\ \end{aligned} \qquad \begin{aligned} \text{id}_{\mathcal{P}\webleft (Y\webright )} & \hookrightarrow f_{!}\circ f^{-1},\\ f^{-1}\circ f_{!} & \hookrightarrow \text{id}_{\mathcal{P}\webleft (X\webright )}, \end{aligned} \]

      having components of the form

      \[ \begin{gathered} U \subset f^{-1}\webleft (f_{*}\webleft (U\webright )\webright ),\\ f_{*}\webleft (f^{-1}\webleft (V\webright )\webright ) \subset V, \end{gathered} \qquad \begin{gathered} V \subset f_{!}\webleft (f^{-1}\webleft (V\webright )\webright ),\\ f^{-1}\webleft (f_{!}\webleft (U\webright )\webright ) \subset U \end{gathered} \]

      indexed by $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$.

    2. Bijections of sets
      \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (Y\webright )}\webleft (f_{*}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f_{!}\webleft (V\webright )\webright ), \end{align*}

      natural in $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$ and (respectively) $V\in \mathcal{P}\webleft (X\webright )$ and $U\in \mathcal{P}\webleft (Y\webright )$. In particular:

      1. The following conditions are equivalent:
        1. We have $f_{*}\webleft (U\webright )\subset V$.
        2. We have $U\subset f^{-1}\webleft (V\webright )$.
      2. The following conditions are equivalent:
        1. We have $f^{-1}\webleft (U\webright )\subset V$.
        2. We have $U\subset f_{!}\webleft (V\webright )$.
  3. Interaction With Unions of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

  4. Interaction With Intersections of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

  5. Interaction With Binary Unions. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\cup V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Binary Intersections. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright )=f_{!}\webleft (U\cap V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Complements. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U^{\textsf{c}}\webright )=f_{*}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Symmetric Differences. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\mathbin {\triangle }V\webright )\subset f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Internal Homs of Powersets. We have a natural transformation

    with components

    \[ \webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}\subset f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  10. Lax Preservation of Colimits. We have an inclusion of sets
    \[ \bigcup _{i\in I}f_{!}\webleft (U_{i}\webright )\subset f_{!}\webleft(\bigcup _{i\in I}U_{i}\webright), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ \text{Ø}\hookrightarrow f_{!}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  11. Preservation of Limits. We have an equality of sets
    \[ f_{!}\webleft(\bigcap _{i\in I}U_{i}\webright)=\bigcap _{i\in I}f_{!}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\cap V\webright ) = f_{!}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ),\\ f_{!}\webleft (X\webright ) = Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  12. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\hookrightarrow f_{!}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  13. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cap ,X\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cap ,Y\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\cap V\webright ) \mathbin {\overset {=}{\rightarrow }}f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon f_{!}\webleft (X\webright ) \mathbin {\overset {=}{\rightarrow }}Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  14. Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
    \[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )_{!}\webleft (U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V\webright )=f_{!}\webleft (U\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.

  15. Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
    \[ \webleft (f\boxtimes _{X\times Y} g\webright )_{!}\webleft (U\boxtimes _{X\times Y}V\webright )=f_{!}\webleft (U\webright )\boxtimes _{X'\times Y'}g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.

  16. Relation to Direct Images. We have
    \begin{align*} f_{!}\webleft (U\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & = Y\setminus f_{*}\webleft (X\setminus U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  17. Interaction With Injections. If $f$ is injective, then we have
    \begin{gather*} f_{!,\text{im}}\webleft (U\webright ) = f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) = Y\setminus \mathrm{Im}\webleft (f\webright ),\\ \begin{aligned} f_{!}\webleft (U\webright ) & = f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright )\\ & = f_{*}\webleft (U\webright )\cup \webleft (Y\setminus \mathrm{Im}\webleft (f\webright )\webright ) \end{aligned}\end{gather*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  18. Interaction With Surjections. If $f$ is surjective, then we have
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) & = \text{Ø},\\ f_{!}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
Omitted.
Item 2: Triple Adjointness
This follows from Remark 2.6.1.1.3, Remark 2.6.2.1.2, Remark 2.6.3.1.3, and , of .
Item 3: Interaction With Unions of Families of Subsets
We have
\begin{align*} \bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcup _{V\in \webleft\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\webright\} }V\\ & = \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}

This finishes the proof.

Item 4: Interaction With Intersections of Families of Subsets
We have
\begin{align*} \bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcap _{V\in \webleft\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\webright\} }V\\ & = \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}

This finishes the proof.

Item 5: Interaction With Binary Unions
We have
\begin{align*} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\cup f_{*}\webleft (V^{\textsf{c}}\webright )^{\textsf{c}}\\ & = \webleft (f_{*}\webleft (U^{\textsf{c}}\webright )\cap f_{*}\webleft (V^{\textsf{c}}\webright )\webright )^{\textsf{c}}\\ & \subset \webleft (f_{*}\webleft (U^{\textsf{c}}\cap V^{\textsf{c}}\webright )\webright )^{\textsf{c}}\\ & = f_{*}\webleft (\webleft (U\cup V\webright )^{\textsf{c}}\webright )^{\textsf{c}}\\ & = f_{!}\webleft (U\cup V\webright ), \end{align*}

where:

  1. We have used Item 16 for the first equality.
  2. We have used Item 2 of Proposition 2.3.11.1.2 for the second equality.
  3. We have used Item 6 of Proposition 2.6.1.1.4 for the third equality.
  4. We have used Item 2 of Proposition 2.3.11.1.2 for the fourth equality.
  5. We have used Item 16 for the last equality.

This finishes the proof.

Item 7: Interaction With Complements
Omitted.
Item 8: Interaction With Symmetric Differences
Omitted.
Item 9: Interaction With Internal Homs of Powersets
We have
\begin{align*} \big [f_{*}\webleft (U\webright ),f^{!}\webleft (V\webright )\big ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (U\webright )^{\textsf{c}}\cup f_{!}\webleft (V\webright )\\ & = f_{!}\webleft (U^{\textsf{c}}\webright )\cup f_{!}\webleft (V\webright )\\ & \subset f_{!}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ), \end{align*}

where we have used:

  1. Item 7 of Proposition 2.6.3.1.6 for the second equality.
  2. Item 5 of Proposition 2.6.3.1.6 for the inclusion.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (). This finishes the proof.

Item 6: Interaction With Binary Intersections
This follows from Item 11.
Item 10: Lax Preservation of Colimits
Omitted.
Item 11: Preservation of Limits
This follows from Item 2 and of .
Item 12: Symmetric Lax Monoidality With Respect to Unions
This follows from Item 10.
Item 13: Symmetric Strict Monoidality With Respect to Intersections
This follows from Item 11.
Item 14: Interaction With Coproducts
Omitted.
Item 15: Interaction With Products
Omitted.
Item 16: Relation to Direct Images
We claim that $f_{!}\webleft (U\webright )=Y\setminus f_{*}\webleft (X\setminus U\webright )$.
  • The First Implication. We claim that

    \[ f_{!}\webleft (U\webright )\subset Y\setminus f_{*}\webleft (X\setminus U\webright ). \]

    Let $y\in f_{!}\webleft (U\webright )$. We need to show that $y\not\in f_{*}\webleft (X\setminus U\webright )$, i.e. that there is no $x\in X\setminus U$ such that $f\webleft (x\webright )=y$.

    This is indeed the case, as otherwise we would have $x\in f^{-1}\webleft (y\webright )$ and $x\not\in U$, contradicting $f^{-1}\webleft (y\webright )\subset U$ (which holds since $y\in f_{!}\webleft (U\webright )$).

    Thus $y\in Y\setminus f_{*}\webleft (X\setminus U\webright )$.

  • The Second Implication. We claim that

    \[ Y\setminus f_{*}\webleft (X\setminus U\webright )\subset f_{!}\webleft (U\webright ). \]

    Let $y\in Y\setminus f_{*}\webleft (X\setminus U\webright )$. We need to show that $y\in f_{!}\webleft (U\webright )$, i.e. that $f^{-1}\webleft (y\webright )\subset U$.

    Since $y\not\in f_{*}\webleft (X\setminus U\webright )$, there exists no $x\in X\setminus U$ such that $y=f\webleft (x\webright )$, and hence $f^{-1}\webleft (y\webright )\subset U$.

    Thus $y\in f_{!}\webleft (U\webright )$.

This finishes the proof of Item 16.
Item 17: Interaction With Injections
Omitted.
Item 18: Interaction With Surjections
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: