2.4.6 Direct Images With Compact Support

Let $A$ and $B$ be sets and let $f\colon A\to B$ be a function.

The direct image with compact support function associated to $f$ is the function

\[ f_{!}\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

defined by[1][2]

\begin{align*} f_{!}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ b\in B\ \middle |\ \begin{aligned} & \text{for each $a\in A$, if we have}\\ & \text{$f\webleft (a\webright )=b$, then $a\in U$}\end{aligned} \webright\} \\ & = \webleft\{ b\in B\ \middle |\ \text{we have $f^{-1}\webleft (b\webright )\subset U$}\webright\} \end{align*}

for each $U\in \mathcal{P}\webleft (A\webright )$.

Sometimes one finds the notation

\[ \forall _{f}\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

for $f_{*}$. This notation comes from the fact that the following statements are equivalent, where $b\in B$ and $U\in \mathcal{P}\webleft (A\webright )$:

  • We have $b\in \forall _{f}\webleft (U\webright )$.
  • For each $a\in A$, if $b=f\webleft (a\webright )$, then $a\in U$.

Identifying subsets of $A$ with functions from $A$ to $\{ \mathsf{true},\mathsf{false}\} $ via Item 1 and Item 2 of Proposition 2.4.3.1.6, we see that the direct image with compact support function associated to $f$ is equivalently the function

\[ f_{!}\colon \mathcal{P}\webleft (A\webright )\to \mathcal{P}\webleft (B\webright ) \]

defined by

\begin{align*} f_{!}\webleft (\chi _{U}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ran}_{f}\webleft (\chi _{U}\webright )\\ & = \operatorname*{\text{lim}}\webleft (\webleft (\underline{\webleft (-_{1}\webright )}\mathbin {\overset {\to }{\times }}f\webright )\overset {\text{pr}}{\twoheadrightarrow }A\overset {\chi _{U}}{\to }\{ \mathsf{true},\mathsf{false}\} \webright )\\ & = \operatorname*{\text{lim}}_{\substack {a\in A\\ f\webleft (a\webright )=-_{1} }}\webleft (\chi _{U}\webleft (a\webright )\webright )\\ & = \bigwedge _{\substack {a\in A\\ f\webleft (a\webright )=-_{1} }}\webleft (\chi _{U}\webleft (a\webright )\webright ).\end{align*}

where we have used for the second equality. In other words, we have

\begin{align*} \webleft [f_{!}\webleft (\chi _{U}\webright )\webright ]\webleft (b\webright )& =\bigwedge _{\substack {a\in A\\ f\webleft (a\webright )=b }}\webleft (\chi _{U}\webleft (a\webright )\webright )\\ & =\begin{cases} \mathsf{true}& \text{if, for each $a\in A$ such that}\\ & \text{$f\webleft (a\webright )=b$, we have $a\in U,$}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & =\begin{cases} \mathsf{true}& \text{if $f^{-1}\webleft (b\webright )\subset U$}\\ \mathsf{false}& \text{otherwise} \end{cases}\end{align*}

for each $b\in B$.

Let $U$ be a subset of $A$.[3][4]

  1. The image part of the direct image with compact support $f_{!}\webleft (U\webright )$ of $U$ is the set $f_{!,\text{im}}\webleft (U\webright )$ defined by
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U\webright )\cap \mathrm{Im}\webleft (f\webright )\\ & = \webleft\{ b\in B\ \middle |\ \text{we have $f^{-1}\webleft (b\webright )\subset U$ and $f^{-1}\webleft (b\webright )\neq \emptyset $}\webright\} .\end{align*}
  2. The complement part of the direct image with compact support $f_{!}\webleft (U\webright )$ of $U$ is the set $f_{!,\text{cp}}\webleft (U\webright )$ defined by
    \begin{align*} f_{!,\text{cp}}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U\webright )\cap \webleft (B\setminus \mathrm{Im}\webleft (f\webright )\webright )\\ & = B\setminus \mathrm{Im}\webleft (f\webright )\\ & = \webleft\{ b\in B\ \middle |\ \text{we have $f^{-1}\webleft (b\webright )\subset U$ and $f^{-1}\webleft (b\webright )=\emptyset $}\webright\} \\ & = \webleft\{ b\in B\ \middle |\ f^{-1}\webleft (b\webright )=\emptyset \webright\} .\end{align*}

Here are some examples of direct images with compact support.

  1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f\colon \mathbb {N}\to \mathbb {N}$ given by
    \[ f\webleft (n\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}2n \]

    for each $n\in \mathbb {N}$. Since $f$ is injective, we have

    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & = f_{*}\webleft (U\webright )\\ f_{!,\text{cp}}\webleft (U\webright ) & = \webleft\{ \text{odd natural numbers}\webright\} \end{align*}

    for any $U\subset \mathbb {N}$.

  2. Parabolas. Consider the function $f\colon \mathbb {R}\to \mathbb {R}$ given by
    \[ f\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x^{2} \]

    for each $x\in \mathbb {R}$. We have

    \[ f_{!,\text{cp}}\webleft (U\webright )=\mathbb {R}_{<0} \]

    for any $U\subset \mathbb {R}$. Moreover, since $f^{-1}\webleft (x\webright )=\webleft\{ -\sqrt{x},\sqrt{x}\webright\} $, we have e.g.:

    \begin{align*} f_{!,\text{im}}\webleft (\webleft [0,1\webright ]\webright ) & = \webleft\{ 0\webright\} ,\\ f_{!,\text{im}}\webleft (\webleft [-1,1\webright ]\webright ) & = \webleft [0,1\webright ],\\ f_{!,\text{im}}\webleft (\webleft [1,2\webright ]\webright ) & = \emptyset ,\\ f_{!,\text{im}}\webleft (\webleft [-2,-1\webright ]\cup \webleft [1,2\webright ]\webright ) & = \webleft [1,4\webright ]. \end{align*}
  3. Circles. Consider the function $f\colon \mathbb {R}^{2}\to \mathbb {R}$ given by
    \[ f\webleft (x,y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x^{2}+y^{2} \]

    for each $\webleft (x,y\webright )\in \mathbb {R}^{2}$. We have

    \[ f_{!,\text{cp}}\webleft (U\webright )=\mathbb {R}_{<0} \]

    for any $U\subset \mathbb {R}^{2}$, and since

    \[ f^{-1}\webleft (r\webright )= \begin{cases} \text{a circle of radius $r$ about the origin} & \text{if $r>0$,}\\ \webleft\{ \webleft (0,0\webright )\webright\} & \text{if $r=0$,}\\ \emptyset & \text{if $r<0$,} \end{cases} \]

    we have e.g.:

    \begin{align*} f_{!,\text{im}}\webleft (\webleft [-1,1\webright ]\times \webleft [-1,1\webright ]\webright ) & = \webleft [0,1\webright ],\\ f_{!,\text{im}}\webleft (\webleft (\webleft [-1,1\webright ]\times \webleft [-1,1\webright ]\webright )\setminus \webleft [-1,1\webright ]\times \webleft\{ 0\webright\} \webright ) & = \emptyset . \end{align*}

Let $f\colon A\to B$ be a function.

  1. Functoriality. The assignment $U\mapsto f_{!}\webleft (U\webright )$ defines a functor
    \[ f_{!}\colon \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $U\in \mathcal{P}\webleft (A\webright )$, we have

      \[ \webleft [f_{!}\webright ]\webleft (U\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U\webright ). \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (A\webright )$:
      • If $U\subset V$, then $f_{!}\webleft (U\webright )\subset f_{!}\webleft (V\webright )$.

  2. Triple Adjointness. We have a triple adjunction
    witnessed by bijections of sets
    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (B\webright )}\webleft (f_{*}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,f_{!}\webleft (V\webright )\webright ), \end{align*}

    natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$ and (respectively) $V\in \mathcal{P}\webleft (A\webright )$ and $U\in \mathcal{P}\webleft (B\webright )$, i.e. where:

    1. The following conditions are equivalent:
      1. We have $f_{*}\webleft (U\webright )\subset V$.
      2. We have $U\subset f^{-1}\webleft (V\webright )$.
    2. The following conditions are equivalent:
      1. We have $f^{-1}\webleft (U\webright )\subset V$.
      2. We have $U\subset f_{!}\webleft (V\webright )$.

  3. Lax Preservation of Colimits. We have an inclusion of sets
    \[ \bigcup _{i\in I}f_{!}\webleft (U_{i}\webright )\subset f_{!}\webleft (\bigcup _{i\in I}U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ \emptyset \hookrightarrow f_{!}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  4. Preservation of Limits. We have an equality of sets
    \[ f_{!}\webleft (\bigcap _{i\in I}U_{i}\webright )=\bigcap _{i\in I}f_{!}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (A\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\cap V\webright ) = f_{!}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ),\\ f_{!}\webleft (A\webright ) = B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  5. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\emptyset \webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\emptyset \webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon \emptyset \hookrightarrow f_{!}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  6. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ) \to \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\cap V\webright ) \mathbin {\overset {=}{\rightarrow }}f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon f_{!}\webleft (A\webright ) \mathbin {\overset {=}{\rightarrow }}B, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (A\webright )$.

  7. Interaction With Coproducts. Let $f\colon A\to A'$ and $g\colon B\to B'$ be maps of sets. We have
    \[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )_{!}\webleft (U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V\webright )=f_{!}\webleft (U\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (A\webright )$ and each $V\in \mathcal{P}\webleft (B\webright )$.

  8. Interaction With Products. Let $f\colon A\to A'$ and $g\colon B\to B'$ be maps of sets. We have
    \[ \webleft (f\times g\webright )_{!}\webleft (U\times V\webright )=f_{!}\webleft (U\webright )\times g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (A\webright )$ and each $V\in \mathcal{P}\webleft (B\webright )$.

  9. Relation to Direct Images. We have
    \[ f_{!}\webleft (U\webright )=B\setminus f_{*}\webleft (A\setminus U\webright ) \]

    for each $U\in \mathcal{P}\webleft (A\webright )$.

  10. Interaction With Injections. If $f$ is injective, then we have
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & = f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) & = B\setminus \mathrm{Im}\webleft (f\webright ),\\ f_{!}\webleft (U\webright ) & = f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright )\\ & = f_{*}\webleft (U\webright )\cup \webleft (B\setminus \mathrm{Im}\webleft (f\webright )\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (A\webright )$.

  11. Interaction With Surjections. If $f$ is surjective, then we have
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) & = \emptyset ,\\ f_{!}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (A\webright )$.

Item 1: Functoriality
Clear.
Item 2: Triple Adjointness
This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and of .
Item 3: Lax Preservation of Colimits
Omitted.
Item 4: Preservation of Limits
This follows from Item 2 and of .
Item 5: Symmetric Lax Monoidality With Respect to Unions
This follows from Item 3.
Item 6: Symmetric Strict Monoidality With Respect to Intersections
This follows from Item 4.
Item 7: Interaction With Coproducts
Clear.
Item 8: Interaction With Products
Clear.
Item 9: Relation to Direct Images
We claim that $f_{!}\webleft (U\webright )=B\setminus f_{*}\webleft (A\setminus U\webright )$.
  • The First Implication. We claim that
    \[ f_{!}\webleft (U\webright )\subset B\setminus f_{*}\webleft (A\setminus U\webright ). \]

    Let $b\in f_{!}\webleft (U\webright )$. We need to show that $b\not\in f_{*}\webleft (A\setminus U\webright )$, i.e. that there is no $a\in A\setminus U$ such that $f\webleft (a\webright )=b$.

    This is indeed the case, as otherwise we would have $a\in f^{-1}\webleft (b\webright )$ and $a\not\in U$, contradicting $f^{-1}\webleft (b\webright )\subset U$ (which holds since $b\in f_{!}\webleft (U\webright )$).

    Thus $b\in B\setminus f_{*}\webleft (A\setminus U\webright )$.

  • The Second Implication. We claim that

    \[ B\setminus f_{*}\webleft (A\setminus U\webright )\subset f_{!}\webleft (U\webright ). \]

    Let $b\in B\setminus f_{*}\webleft (A\setminus U\webright )$. We need to show that $b\in f_{!}\webleft (U\webright )$, i.e. that $f^{-1}\webleft (b\webright )\subset U$.

    Since $b\not\in f_{*}\webleft (A\setminus U\webright )$, there exists no $a\in A\setminus U$ such that $b=f\webleft (a\webright )$, and hence $f^{-1}\webleft (b\webright )\subset U$.

    Thus $b\in f_{!}\webleft (U\webright )$.

This finishes the proof of Item 9.
Item 10: Interaction With Injections
Clear.
Item 11: Interaction With Surjections
Clear.

Let $f\colon A\to B$ be a function.

  1. Functionality I. The assignment $f\mapsto f_{!}$ defines a function
    \[ \webleft (-\webright )_{!|A,B}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (A\webright ),\mathcal{P}\webleft (B\webright )\webright ). \]
  2. Functionality II. The assignment $f\mapsto f_{!}$ defines a function
    \[ \webleft (-\webright )_{!|A,B}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\webright ). \]
  3. Interaction With Identities. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
    \[ \webleft (\text{id}_{A}\webright )_{!}=\text{id}_{\mathcal{P}\webleft (A\webright )}. \]
  4. Interaction With Composition. For each pair of composable functions $f\colon A\to B$ and $g\colon B\to C$, we have


Footnotes

[1] Further Terminology: The set $f_{!}\webleft (U\webright )$ is called the direct image with compact support of $U$ by $f$.
[2] We also have
\[ f_{!}\webleft (U\webright )=B\setminus f_{*}\webleft (A\setminus U\webright ); \]
see Item 9 of Proposition 2.4.6.1.6.
[3] Note that we have
\[ f_{!}\webleft (U\webright )=f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright ), \]
as
\begin{align*} f_{!}\webleft (U\webright ) & = f_{!}\webleft (U\webright )\cap B\\ & = f_{!}\webleft (U\webright )\cap \webleft (\mathrm{Im}\webleft (f\webright )\cup \webleft (B\setminus \mathrm{Im}\webleft (f\webright )\webright )\webright )\\ & = \webleft (f_{!}\webleft (U\webright )\cap \mathrm{Im}\webleft (f\webright )\webright )\cup \webleft (f_{!}\webleft (U\webright )\cap \webleft (B\setminus \mathrm{Im}\webleft (f\webright )\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright ). \end{align*}
[4] In terms of the meet computation of $f_{!}\webleft (U\webright )$ of Remark 2.4.6.1.3, namely
\[ f_{!}\webleft (\chi _{U}\webright ) =\bigwedge _{\substack {a\in A\\ f\webleft (a\webright )=-_{1}}}\webleft (\chi _{U}\webleft (a\webright )\webright ), \]
we see that $\smash {f_{!,\text{im}}}$ corresponds to meets indexed over nonempty sets, while $\smash {f_{!,\text{cp}}}$ corresponds to meets indexed over the empty set.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: