2.6.3 Direct Images With Compact Support

Let $f\colon X\to Y$ be a function.

The direct image with compact support function associated to $f$ is the function

\[ f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]

defined by12

\begin{align*} f_{!}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ y\in Y\ \middle |\ \begin{aligned} & \text{for each $x\in X$, if we have}\\ & \text{$f\webleft (x\webright )=y$, then $x\in U$}\end{aligned} \webright\} \\ & = \webleft\{ y\in Y\ \middle |\ \text{we have $f^{-1}\webleft (y\webright )\subset U$}\webright\} \end{align*}

for each $U\in \mathcal{P}\webleft (X\webright )$.


1Further Terminology: The set $f_{!}\webleft (U\webright )$ is called the direct image with compact support of $U$ by $f$.
2We also have

\begin{align*} f_{!}\webleft (U\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}Y\setminus f_{*}\webleft (X\setminus U\webright );\end{align*}

see Item 16 of Proposition 2.6.3.1.6.

Sometimes one finds the notation

\[ \forall _{f}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]

for $f_{*}$. This notation comes from the fact that the following statements are equivalent, where $y\in Y$ and $U\in \mathcal{P}\webleft (X\webright )$:

  • We have $y\in \forall _{f}\webleft (U\webright )$.
  • For each $x\in X$, if $y=f\webleft (x\webright )$, then $x\in U$.
We will not make use of this notation in the present work.

Identifying $\mathcal{P}\webleft (X\webright )$ with $\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$ via Item 2 of Proposition 2.5.1.1.4, we see that the direct image with compact support function associated to $f$ is equivalently the function

\[ f_{!}\colon \mathcal{P}\webleft (X\webright )\to \mathcal{P}\webleft (Y\webright ) \]

defined by

\begin{align*} f_{!}\webleft (\chi _{U}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\text{Ran}_{f}\webleft (\chi _{U}\webright )\\ & = \operatorname*{\text{lim}}\webleft (\webleft (\underline{\webleft (-_{1}\webright )}\mathbin {\overset {\to }{\times }}f\webright )\overset {\text{pr}}{\twoheadrightarrow }X\overset {\chi _{U}}{\to }\{ \mathsf{true},\mathsf{false}\} \webright )\\ & = \operatorname*{\text{lim}}_{\substack {x\in X\\ f\webleft (x\webright )=-_{1} }}\webleft (\chi _{U}\webleft (x\webright )\webright )\\ & = \bigwedge _{\substack {x\in X\\ f\webleft (x\webright )=-_{1} }}\webleft (\chi _{U}\webleft (x\webright )\webright ).\end{align*}

where we have used , for the second equality. In other words, we have

\begin{align*} \webleft [f_{!}\webleft (\chi _{U}\webright )\webright ]\webleft (y\webright ) & = \bigwedge _{\substack {x\in X\\ f\webleft (x\webright )=y }}\webleft (\chi _{U}\webleft (x\webright )\webright )\\ & = \begin{cases} \mathsf{true}& \text{if, for each $x\in X$ such that}\\ & \text{$f\webleft (x\webright )=y$, we have $x\in U,$}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & = \begin{cases} \mathsf{true}& \text{if $f^{-1}\webleft (y\webright )\subset U$}\\ \mathsf{false}& \text{otherwise} \end{cases}\end{align*}

for each $y\in Y$.

Let $U$ be a subset of $X$.12

  1. The image part of the direct image with compact support $f_{!}\webleft (U\webright )$ of $U$ is the set $f_{!,\text{im}}\webleft (U\webright )$ defined by
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U\webright )\cap \mathrm{Im}\webleft (f\webright )\\ & = \webleft\{ y\in Y\ \middle |\ \text{we have $f^{-1}\webleft (y\webright )\subset U$ and $f^{-1}\webleft (y\webright )\neq \text{Ø}$}\webright\} .\end{align*}
  2. The complement part of the direct image with compact support $f_{!}\webleft (U\webright )$ of $U$ is the set $f_{!,\text{cp}}\webleft (U\webright )$ defined by
    \begin{align*} f_{!,\text{cp}}\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (U\webright )\cap \webleft (Y\setminus \mathrm{Im}\webleft (f\webright )\webright )\\ & = Y\setminus \mathrm{Im}\webleft (f\webright )\\ & = \webleft\{ y\in Y\ \middle |\ \text{we have $f^{-1}\webleft (y\webright )\subset U$ and $f^{-1}\webleft (y\webright )=\text{Ø}$}\webright\} \\ & = \webleft\{ y\in Y\ \middle |\ f^{-1}\webleft (y\webright )=\text{Ø}\webright\} .\end{align*}


1Note that we have

\[ f_{!}\webleft (U\webright )=f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright ), \]

as

\begin{align*} f_{!}\webleft (U\webright ) & = f_{!}\webleft (U\webright )\cap Y\\ & = f_{!}\webleft (U\webright )\cap \webleft (\mathrm{Im}\webleft (f\webright )\cup \webleft (Y\setminus \mathrm{Im}\webleft (f\webright )\webright )\webright )\\ & = \webleft (f_{!}\webleft (U\webright )\cap \mathrm{Im}\webleft (f\webright )\webright )\cup \webleft (f_{!}\webleft (U\webright )\cap \webleft (Y\setminus \mathrm{Im}\webleft (f\webright )\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright ). \end{align*}

2In terms of the meet computation of $f_{!}\webleft (U\webright )$ of Remark 2.6.3.1.3, namely

\[ f_{!}\webleft (\chi _{U}\webright ) =\bigwedge _{\substack {x\in X\\ f\webleft (x\webright )=-_{1}}}\webleft (\chi _{U}\webleft (x\webright )\webright ), \]

we see that $\smash {f_{!,\text{im}}}$ corresponds to meets indexed over nonempty sets, while $\smash {f_{!,\text{cp}}}$ corresponds to meets indexed over the empty set.

Here are some examples of direct images with compact support.

  1. The Multiplication by Two Map on the Natural Numbers. Consider the function $f\colon \mathbb {N}\to \mathbb {N}$ given by
    \[ f\webleft (n\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}2n \]

    for each $n\in \mathbb {N}$. Since $f$ is injective, we have

    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & = f_{*}\webleft (U\webright )\\ f_{!,\text{cp}}\webleft (U\webright ) & = \webleft\{ \text{odd natural numbers}\webright\} \end{align*}

    for any $U\subset \mathbb {N}$.

  2. Parabolas. Consider the function $f\colon \mathbb {R}\to \mathbb {R}$ given by
    \[ f\webleft (x\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x^{2} \]

    for each $x\in \mathbb {R}$. We have

    \[ f_{!,\text{cp}}\webleft (U\webright )=\mathbb {R}_{<0} \]

    for any $U\subset \mathbb {R}$. Moreover, since $f^{-1}\webleft (x\webright )=\webleft\{ -\sqrt{x},\sqrt{x}\webright\} $, we have e.g.:

    \begin{gather*} f_{!,\text{im}}\webleft (\webleft [0,1\webright ]\webright ) = \webleft\{ 0\webright\} ,\\ f_{!,\text{im}}\webleft (\webleft [-1,1\webright ]\webright ) = \webleft [0,1\webright ],\\ f_{!,\text{im}}\webleft (\webleft [1,2\webright ]\webright ) = \text{Ø},\\ f_{!,\text{im}}\webleft (\webleft [-2,-1\webright ]\cup \webleft [1,2\webright ]\webright ) = \webleft [1,4\webright ]. \end{gather*}
  3. Circles. Consider the function $f\colon \mathbb {R}^{2}\to \mathbb {R}$ given by
    \[ f\webleft (x,y\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}x^{2}+y^{2} \]

    for each $\webleft (x,y\webright )\in \mathbb {R}^{2}$. We have

    \[ f_{!,\text{cp}}\webleft (U\webright )=\mathbb {R}_{<0} \]

    for any $U\subset \mathbb {R}^{2}$, and since

    \[ f^{-1}\webleft (r\webright )= \begin{cases} \text{a circle of radius $r$ about the origin} & \text{if $r>0$,}\\ \webleft\{ \webleft (0,0\webright )\webright\} & \text{if $r=0$,}\\ \text{Ø}& \text{if $r<0$,} \end{cases} \]

    we have e.g.:

    \begin{gather*} f_{!,\text{im}}\webleft (\webleft [-1,1\webright ]\times \webleft [-1,1\webright ]\webright ) = \webleft [0,1\webright ],\\ f_{!,\text{im}}\webleft (\webleft (\webleft [-1,1\webright ]\times \webleft [-1,1\webright ]\webright )\setminus \webleft [-1,1\webright ]\times \webleft\{ 0\webright\} \webright ) = \text{Ø}. \end{gather*}

Let $f\colon X\to Y$ be a function.

  1. Functoriality. The assignment $U\mapsto f_{!}\webleft (U\webright )$ defines a functor
    \[ f_{!}\colon \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright ). \]

    In particular, for each $U,V\in \mathcal{P}\webleft (X\webright )$, the following condition is satisfied:

    • If $U\subset V$, then $f_{!}\webleft (U\webright )\subset f_{!}\webleft (V\webright )$.

  2. Triple Adjointness. We have a triple adjunction
    witnessed by:
    1. Units and counits of the form
      \[ \begin{aligned} \text{id}_{\mathcal{P}\webleft (X\webright )} & \hookrightarrow f^{-1}\circ f_{*},\\ f_{*}\circ f^{-1} & \hookrightarrow \text{id}_{\mathcal{P}\webleft (Y\webright )},\\ \end{aligned} \qquad \begin{aligned} \text{id}_{\mathcal{P}\webleft (Y\webright )} & \hookrightarrow f_{!}\circ f^{-1},\\ f^{-1}\circ f_{!} & \hookrightarrow \text{id}_{\mathcal{P}\webleft (X\webright )}, \end{aligned} \]

      having components of the form

      \[ \begin{gathered} U \subset f^{-1}\webleft (f_{*}\webleft (U\webright )\webright ),\\ f_{*}\webleft (f^{-1}\webleft (V\webright )\webright ) \subset V, \end{gathered} \qquad \begin{gathered} V \subset f_{!}\webleft (f^{-1}\webleft (V\webright )\webright ),\\ f^{-1}\webleft (f_{!}\webleft (U\webright )\webright ) \subset U \end{gathered} \]

      indexed by $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$.

    2. Bijections of sets
      \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (Y\webright )}\webleft (f_{*}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,f_{!}\webleft (V\webright )\webright ), \end{align*}

      natural in $U\in \mathcal{P}\webleft (X\webright )$ and $V\in \mathcal{P}\webleft (Y\webright )$ and (respectively) $V\in \mathcal{P}\webleft (X\webright )$ and $U\in \mathcal{P}\webleft (Y\webright )$. In particular:

      1. The following conditions are equivalent:
        1. We have $f_{*}\webleft (U\webright )\subset V$.
        2. We have $U\subset f^{-1}\webleft (V\webright )$.
      2. The following conditions are equivalent:
        1. We have $f^{-1}\webleft (U\webright )\subset V$.
        2. We have $U\subset f_{!}\webleft (V\webright )$.
  3. Interaction With Unions of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

  4. Interaction With Intersections of Families of Subsets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

  5. Interaction With Binary Unions. Let $f\colon X\to Y$ be a function. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright )\subset f_{!}\webleft (U\cup V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Binary Intersections. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright )=f_{!}\webleft (U\cap V\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Complements. The diagram

    commutes, i.e. we have

    \[ f_{!}\webleft (U^{\textsf{c}}\webright )=f_{*}\webleft (U\webright )^{\textsf{c}} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Symmetric Differences. We have a natural transformation

    with components

    \[ f_{!}\webleft (U\mathbin {\triangle }V\webright )\subset f_{!}\webleft (U\webright )\mathbin {\triangle }f_{!}\webleft (V\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Internal Homs of Powersets. We have a natural transformation

    with components

    \[ \webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}\subset f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) \]

    indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.

  10. Lax Preservation of Colimits. We have an inclusion of sets
    \[ \bigcup _{i\in I}f_{!}\webleft (U_{i}\webright )\subset f_{!}\webleft(\bigcup _{i\in I}U_{i}\webright), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have inclusions

    \[ \begin{gathered} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ \text{Ø}\hookrightarrow f_{!}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  11. Preservation of Limits. We have an equality of sets
    \[ f_{!}\webleft(\bigcap _{i\in I}U_{i}\webright)=\bigcap _{i\in I}f_{!}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (X\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\cap V\webright ) = f_{!}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ),\\ f_{!}\webleft (X\webright ) = Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  12. Symmetric Lax Monoidality With Respect to Unions. The direct image with compact support function of Item 1 has a symmetric lax monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cup ,\text{Ø}\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cup ,\text{Ø}\webright ), \]

    being equipped with inclusions

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) \hookrightarrow f_{!}\webleft (U\cup V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon \text{Ø}\hookrightarrow f_{!}\webleft (\text{Ø}\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  13. Symmetric Strict Monoidality With Respect to Intersections. The direct image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (f_{!},f^{\otimes }_{!},f^{\otimes }_{!|\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (X\webright ),\cap ,X\webright ) \to \webleft (\mathcal{P}\webleft (Y\webright ),\cap ,Y\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{\otimes }_{!|U,V} \colon f_{!}\webleft (U\cap V\webright ) \mathbin {\overset {=}{\rightarrow }}f_{!}\webleft (U\webright )\cap f_{!}\webleft (V\webright ),\\ f^{\otimes }_{!|\mathbb {1}} \colon f_{!}\webleft (X\webright ) \mathbin {\overset {=}{\rightarrow }}Y, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (X\webright )$.

  14. Interaction With Coproducts. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
    \[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )_{!}\webleft (U\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V\webright )=f_{!}\webleft (U\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.

  15. Interaction With Products. Let $f\colon X\to X'$ and $g\colon Y\to Y'$ be maps of sets. We have
    \[ \webleft (f\boxtimes _{X\times Y} g\webright )_{!}\webleft (U\boxtimes _{X\times Y}V\webright )=f_{!}\webleft (U\webright )\boxtimes _{X'\times Y'}g_{!}\webleft (V\webright ) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $V\in \mathcal{P}\webleft (Y\webright )$.

  16. Relation to Direct Images. We have
    \begin{align*} f_{!}\webleft (U\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\\ & = Y\setminus f_{*}\webleft (X\setminus U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  17. Interaction With Injections. If $f$ is injective, then we have
    \begin{gather*} f_{!,\text{im}}\webleft (U\webright ) = f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) = Y\setminus \mathrm{Im}\webleft (f\webright ),\\ \begin{aligned} f_{!}\webleft (U\webright ) & = f_{!,\text{im}}\webleft (U\webright )\cup f_{!,\text{cp}}\webleft (U\webright )\\ & = f_{*}\webleft (U\webright )\cup \webleft (Y\setminus \mathrm{Im}\webleft (f\webright )\webright ) \end{aligned}\end{gather*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  18. Interaction With Surjections. If $f$ is surjective, then we have
    \begin{align*} f_{!,\text{im}}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ),\\ f_{!,\text{cp}}\webleft (U\webright ) & = \text{Ø},\\ f_{!}\webleft (U\webright ) & \subset f_{*}\webleft (U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functoriality
Omitted.
Item 2: Triple Adjointness
This follows from Remark 2.6.1.1.3, Remark 2.6.2.1.2, Remark 2.6.3.1.3, and , of .
Item 3: Interaction With Unions of Families of Subsets
We have
\begin{align*} \bigcup _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcup _{V\in \webleft\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\webright\} }V\\ & = \bigcup _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}

This finishes the proof.

Item 4: Interaction With Intersections of Families of Subsets
We have
\begin{align*} \bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V & = \bigcap _{V\in \webleft\{ f_{!}\webleft (U\webright )\in \mathcal{P}\webleft (X\webright )\ \middle |\ U\in \mathcal{U}\webright\} }V\\ & = \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright ).\end{align*}

This finishes the proof.

Item 5: Interaction With Binary Unions
We have
\begin{align*} f_{!}\webleft (U\webright )\cup f_{!}\webleft (V\webright ) & = f_{*}\webleft (U^{\textsf{c}}\webright )^{\textsf{c}}\cup f_{*}\webleft (V^{\textsf{c}}\webright )^{\textsf{c}}\\ & = \webleft (f_{*}\webleft (U^{\textsf{c}}\webright )\cap f_{*}\webleft (V^{\textsf{c}}\webright )\webright )^{\textsf{c}}\\ & \subset \webleft (f_{*}\webleft (U^{\textsf{c}}\cap V^{\textsf{c}}\webright )\webright )^{\textsf{c}}\\ & = f_{*}\webleft (\webleft (U\cup V\webright )^{\textsf{c}}\webright )^{\textsf{c}}\\ & = f_{!}\webleft (U\cup V\webright ), \end{align*}

where:

  1. We have used Item 16 for the first equality.
  2. We have used Item 2 of Proposition 2.3.11.1.2 for the second equality.
  3. We have used Item 6 of Proposition 2.6.1.1.4 for the third equality.
  4. We have used Item 2 of Proposition 2.3.11.1.2 for the fourth equality.
  5. We have used Item 16 for the last equality.

This finishes the proof.

Item 7: Interaction With Complements
Omitted.
Item 8: Interaction With Symmetric Differences
Omitted.
Item 9: Interaction With Internal Homs of Powersets
We have
\begin{align*} \big [f_{*}\webleft (U\webright ),f^{!}\webleft (V\webright )\big ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (U\webright )^{\textsf{c}}\cup f_{!}\webleft (V\webright )\\ & = f_{!}\webleft (U^{\textsf{c}}\webright )\cup f_{!}\webleft (V\webright )\\ & \subset f_{!}\webleft (U^{\textsf{c}}\cup V\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ), \end{align*}

where we have used:

  1. Item 7 of Proposition 2.6.3.1.6 for the second equality.
  2. Item 5 of Proposition 2.6.3.1.6 for the inclusion.

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (). This finishes the proof.

Item 6: Interaction With Binary Intersections
This follows from Item 11.
Item 10: Lax Preservation of Colimits
Omitted.
Item 11: Preservation of Limits
This follows from Item 2 and of .
Item 12: Symmetric Lax Monoidality With Respect to Unions
This follows from Item 10.
Item 13: Symmetric Strict Monoidality With Respect to Intersections
This follows from Item 11.
Item 14: Interaction With Coproducts
Omitted.
Item 15: Interaction With Products
Omitted.
Item 16: Relation to Direct Images
We claim that $f_{!}\webleft (U\webright )=Y\setminus f_{*}\webleft (X\setminus U\webright )$.
  • The First Implication. We claim that

    \[ f_{!}\webleft (U\webright )\subset Y\setminus f_{*}\webleft (X\setminus U\webright ). \]

    Let $y\in f_{!}\webleft (U\webright )$. We need to show that $y\not\in f_{*}\webleft (X\setminus U\webright )$, i.e. that there is no $x\in X\setminus U$ such that $f\webleft (x\webright )=y$.

    This is indeed the case, as otherwise we would have $x\in f^{-1}\webleft (y\webright )$ and $x\not\in U$, contradicting $f^{-1}\webleft (y\webright )\subset U$ (which holds since $y\in f_{!}\webleft (U\webright )$).

    Thus $y\in Y\setminus f_{*}\webleft (X\setminus U\webright )$.

  • The Second Implication. We claim that

    \[ Y\setminus f_{*}\webleft (X\setminus U\webright )\subset f_{!}\webleft (U\webright ). \]

    Let $y\in Y\setminus f_{*}\webleft (X\setminus U\webright )$. We need to show that $y\in f_{!}\webleft (U\webright )$, i.e. that $f^{-1}\webleft (y\webright )\subset U$.

    Since $y\not\in f_{*}\webleft (X\setminus U\webright )$, there exists no $x\in X\setminus U$ such that $y=f\webleft (x\webright )$, and hence $f^{-1}\webleft (y\webright )\subset U$.

    Thus $y\in f_{!}\webleft (U\webright )$.

This finishes the proof of Item 16.
Item 17: Interaction With Injections
Omitted.
Item 18: Interaction With Surjections
Omitted.

Let $f\colon X\to B$ be a function.

  1. Functionality I. The assignment $f\mapsto f_{!}$ defines a function
    \[ \webleft (-\webright )_{!|X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (X\webright ),\mathcal{P}\webleft (Y\webright )\webright ). \]
  2. Functionality II. The assignment $f\mapsto f_{!}$ defines a function
    \[ \webleft (-\webright )_{!|X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright )\webright ). \]
  3. Interaction With Identities. For each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
    \[ \webleft (\text{id}_{X}\webright )_{!}=\text{id}_{\mathcal{P}\webleft (X\webright )}. \]
  4. Interaction With Composition. For each pair of composable functions $f\colon X\to Y$ and $g\colon Y\to Z$, we have


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: