2.4.5 Inverse Images

Let $A$ and $B$ be sets and let $f\colon A\to B$ be a function.

The inverse image function associated to $f$ is the function[1]

\[ f^{-1}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

defined by[2]

\begin{align*} f^{-1}\webleft (V\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ a\in A\ \middle |\ \text{we have $f\webleft (a\webright )\in V$}\webright\} \end{align*}

for each $V\in \mathcal{P}\webleft (B\webright )$.

Identifying subsets of $B$ with functions from $B$ to $\{ \mathsf{true},\mathsf{false}\} $ via Item 1 and Item 2 of Proposition 2.4.3.1.6, we see that the inverse image function associated to $f$ is equivalently the function

\[ f^{*}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright ) \]

defined by

\[ f^{*}\webleft (\chi _{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\circ f \]

for each $\chi _{V}\in \mathcal{P}\webleft (B\webright )$, where $\chi _{V}\circ f$ is the composition

\[ A\overset {f}{\to }B\overset {\chi _{V}}{\to }\{ \mathsf{true},\mathsf{false}\} \]

in $\mathsf{Sets}$.

Let $f\colon A\to B$ be a function.

  1. Functoriality. The assignment $V\mapsto f^{-1}\webleft (V\webright )$ defines a functor
    \[ f^{-1}\colon \webleft (\mathcal{P}\webleft (B\webright ),\subset \webright )\to \webleft (\mathcal{P}\webleft (A\webright ),\subset \webright ) \]

    where

    • Action on Objects. For each $V\in \mathcal{P}\webleft (B\webright )$, we have

      \[ \webleft [f^{-1}\webright ]\webleft (V\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}\webleft (V\webright ). \]

    • Action on Morphisms. For each $U,V\in \mathcal{P}\webleft (B\webright )$:
      • If $U\subset V$, then $f^{-1}\webleft (U\webright )\subset f^{-1}\webleft (V\webright )$.

  2. Triple Adjointness. We have a triple adjunction
    witnessed by bijections of sets
    \begin{align*} \textup{Hom}_{\mathcal{P}\webleft (B\webright )}\webleft (f_{*}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,f^{-1}\webleft (V\webright )\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (f^{-1}\webleft (U\webright ),V\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (A\webright )}\webleft (U,f_{!}\webleft (V\webright )\webright ), \end{align*}

    natural in $U\in \mathcal{P}\webleft (A\webright )$ and $V\in \mathcal{P}\webleft (B\webright )$ and (respectively) $V\in \mathcal{P}\webleft (A\webright )$ and $U\in \mathcal{P}\webleft (B\webright )$, i.e. where:

    1. The following conditions are equivalent:
      1. We have $f_{*}\webleft (U\webright )\subset V$;
      2. We have $U\subset f^{-1}\webleft (V\webright )$;
    2. The following conditions are equivalent:
      1. We have $f^{-1}\webleft (U\webright )\subset V$.
      2. We have $U\subset f_{!}\webleft (V\webright )$.

  3. Preservation of Colimits. We have an equality of sets
    \[ f^{-1}\webleft (\bigcup _{i\in I}U_{i}\webright )=\bigcup _{i\in I}f^{-1}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) = f^{-1}\webleft (U\cup V\webright ),\\ f^{-1}\webleft (\emptyset \webright ) = \emptyset , \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  4. Preservation of Limits. We have an equality of sets
    \[ f^{-1}\webleft (\bigcap _{i\in I}U_{i}\webright )=\bigcap _{i\in I}f^{-1}\webleft (U_{i}\webright ), \]

    natural in $\webleft\{ U_{i}\webright\} _{i\in I}\in \mathcal{P}\webleft (B\webright )^{\times I}$. In particular, we have equalities

    \[ \begin{gathered} f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) = f^{-1}\webleft (U\cap V\webright ),\\ f^{-1}\webleft (B\webright ) = A, \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  5. Symmetric Strict Monoidality With Respect to Unions. The inverse image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (B\webright ),\cup ,\emptyset \webright ) \to \webleft (\mathcal{P}\webleft (A\webright ),\cup ,\emptyset \webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}\webleft (U\webright )\cup f^{-1}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (U\cup V\webright ),\\ f^{-1,\otimes }_{\mathbb {1}} \colon \emptyset \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (\emptyset \webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  6. Symmetric Strict Monoidality With Respect to Intersections. The inverse image function of Item 1 has a symmetric strict monoidal structure
    \[ \webleft (f^{-1},f^{-1,\otimes },f^{-1,\otimes }_{\mathbb {1}}\webright ) \colon \webleft (\mathcal{P}\webleft (B\webright ),\cap ,B\webright ) \to \webleft (\mathcal{P}\webleft (A\webright ),\cap ,A\webright ), \]

    being equipped with equalities

    \[ \begin{gathered} f^{-1,\otimes }_{U,V} \colon f^{-1}\webleft (U\webright )\cap f^{-1}\webleft (V\webright ) \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (U\cap V\webright ),\\ f^{-1,\otimes }_{\mathbb {1}} \colon A \mathbin {\overset {=}{\rightarrow }}f^{-1}\webleft (B\webright ), \end{gathered} \]

    natural in $U,V\in \mathcal{P}\webleft (B\webright )$.

  7. Interaction With Coproducts. Let $f\colon A\to A'$ and $g\colon B\to B'$ be maps of sets. We have
    \[ \webleft (f\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g\webright )^{-1}\webleft (U'\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}V'\webright )=f^{-1}\webleft (U'\webright )\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}g^{-1}\webleft (V'\webright ) \]

    for each $U'\in \mathcal{P}\webleft (A'\webright )$ and each $V'\in \mathcal{P}\webleft (B'\webright )$.

  8. Interaction With Products. Let $f\colon A\to A'$ and $g\colon B\to B'$ be maps of sets. We have
    \[ \webleft (f\times g\webright )^{-1}\webleft (U'\times V'\webright )=f^{-1}\webleft (U'\webright )\times g^{-1}\webleft (V'\webright ) \]

    for each $U'\in \mathcal{P}\webleft (A'\webright )$ and each $V'\in \mathcal{P}\webleft (B'\webright )$.

Item 1: Functoriality
Clear.
Item 2: Triple Adjointness
This follows from Remark 2.4.4.1.3, Remark 2.4.5.1.2, Remark 2.4.6.1.3, and of .
Item 3: Preservation of Colimits
This follows from Item 2 and of .[3]
Item 4: Preservation of Limits
This follows from Item 2 and of .[4]
Item 5: Symmetric Strict Monoidality With Respect to Unions
This follows from Item 3.
Item 6: Symmetric Strict Monoidality With Respect to Intersections
This follows from Item 4.
Item 7: Interaction With Coproducts
Clear.
Item 8: Interaction With Products
Clear.

Let $f\colon A\to B$ be a function.

  1. Functionality I. The assignment $f\mapsto f^{-1}$ defines a function
    \[ \webleft (-\webright )^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (B\webright ),\mathcal{P}\webleft (A\webright )\webright ). \]
  2. Functionality II. The assignment $f\mapsto f^{-1}$ defines a function
    \[ \webleft (-\webright )^{-1}_{A,B}\colon \mathsf{Sets}\webleft (A,B\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (B\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (A\webright ),\subset \webright )\webright ). \]
  3. Interaction With Identities. For each $A\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
    \[ \text{id}^{-1}_{A}=\text{id}_{\mathcal{P}\webleft (A\webright )}. \]
  4. Interaction With Composition. For each pair of composable functions $f\colon A\to B$ and $g\colon B\to C$, we have


Footnotes

[1] Further Notation: Also written $f^{*}\colon \mathcal{P}\webleft (B\webright )\to \mathcal{P}\webleft (A\webright )$.
[2] Further Terminology: The set $f^{-1}\webleft (V\webright )$ is called the inverse image of $V$ by $f$.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: