Let $f\colon X\to Y$ be a function.
-
Functionality I. The assignment $f\mapsto f^{-1}$ defines a function
\[ \webleft (-\webright )^{-1}_{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Sets}\webleft (\mathcal{P}\webleft (Y\webright ),\mathcal{P}\webleft (X\webright )\webright ). \]
-
Functionality II. The assignment $f\mapsto f^{-1}$ defines a function
\[ \webleft (-\webright )^{-1}_{X,Y}\colon \mathsf{Sets}\webleft (X,Y\webright ) \to \mathsf{Pos}\webleft (\webleft (\mathcal{P}\webleft (Y\webright ),\subset \webright ),\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )\webright ). \]
-
Interaction With Identities. For each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$, we have
\[ \text{id}^{-1}_{X}=\text{id}_{\mathcal{P}\webleft (X\webright )}. \]
- Interaction With Composition. For each pair of composable functions $f\colon X\to Y$ and $g\colon Y\to Z$, we have