The inverse image function associated to $f$ is the function1

\[ f^{-1}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright ) \]

defined by2

\begin{align*} f^{-1}\webleft (V\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \text{we have $f\webleft (x\webright )\in V$}\webright\} \end{align*}

for each $V\in \mathcal{P}\webleft (Y\webright )$.


1Further Notation: Also written $f^{*}\colon \mathcal{P}\webleft (Y\webright )\to \mathcal{P}\webleft (X\webright )$.
2Further Terminology: The set $f^{-1}\webleft (V\webright )$ is called the inverse image of $V$ by $f$.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: