Let $X$ be a set.

  1. Functionality. The assignment $U\mapsto \chi _{U}$ defines a function
    \[ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ). \]
  2. Bijectivity. The function $\chi _{\webleft (-\webright )}$ from Item 1 is bijective.
  3. Naturality. The collection
    \[ \webleft\{ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )\webright\} _{X\in \text{Obj}\webleft (\mathsf{Sets}\webright )} \]

    defines a natural isomorphism between $\mathcal{P}^{-1}$ and $\mathsf{Sets}\webleft (-,\{ \mathsf{t},\mathsf{f}\} \webright )$. In particular, given a function $f\colon X\to Y$, the diagram

    commutes, i.e. we have

    \[ \chi _{V}\circ f=\chi _{f^{-1}\webleft (V\webright )} \]

    for each $V\in \mathcal{P}\webleft (Y\webright )$.

  4. Interaction With Unions I. We have
    \[ \chi _{U\cup V}=\operatorname*{\text{max}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  5. Interaction With Unions II. We have
    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Intersections I. We have
    \[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Intersections II. We have
    \[ \chi _{U\cap V}=\operatorname*{\text{min}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Differences. We have
    \[ \chi _{U\setminus V}=\chi _{U}-\chi _{U\cap V} \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Complements. We have
    \[ \chi _{U^{\textsf{c}}}\equiv 1-\chi _{U}\ \ (\mathrm{mod}\ 2) \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  10. Interaction With Symmetric Differences. We have
    \[ \chi _{U\mathbin {\triangle }V}=\chi _{U}+\chi _{V}-2\chi _{U\cap V} \]

    and thus, in particular, we have

    \[ \chi _{U\mathbin {\triangle }V}\equiv \chi _{U}+\chi _{V}\ \ (\mathrm{mod}\ 2) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

  11. Interaction With Internal Homs. We have
    \[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}=\operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]

    for each $U,V\in \mathcal{P}\webleft (X\webright )$.

Item 1: Functionality
There is nothing to prove.
Item 2: Bijectivity
We proceed in three steps:

  1. The Inverse of $\chi _{\webleft (-\webright )}$. The inverse of $\chi _{\webleft (-\webright )}$ is the map
    \[ \Phi \colon \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \overset {\scriptstyle \mathord {\sim }}{\dashrightarrow }\mathcal{P}\webleft (X\webright ), \]

    defined by

    \begin{align*} \Phi \webleft (f\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U_{f}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f^{-1}\webleft (\mathsf{true}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ f\webleft (x\webright )=\mathsf{true}\webright\} \end{align*}

    for each $f\in \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$.

  2. Invertibility I. We have
    \begin{align*} \webleft [\Phi \circ \chi _{\webleft (-\webright )}\webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\Phi \webleft (\chi _{U}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi ^{-1}_{U}\webleft (\mathsf{true}\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \chi _{U}\webleft (x\webright )=\mathsf{true}\webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ x\in U\webright\} \\ & = U\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\text{id}_{\mathcal{P}\webleft (X\webright )}\webright ]\webleft (U\webright ) \end{align*}

    for each $U\in \mathcal{P}\webleft (X\webright )$. Thus, we have

    \[ \Phi \circ \chi _{\webleft (-\webright )}=\text{id}_{\mathcal{P}\webleft (X\webright )}. \]
  3. Invertibility II. We have
    \begin{align*} \webleft [\chi _{\webleft (-\webright )}\circ \Phi \webright ]\webleft (U\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{\Phi \webleft (f\webright )}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{f^{-1}\webleft (\mathsf{true}\webright )}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}[\mspace {-3mu}[x\mapsto \begin{cases} \mathsf{true}& \text{if $x\in f^{-1}\webleft (\mathsf{true}\webright )$}\\ \mathsf{false}& \text{otherwise}\end{cases}]\mspace {-3mu}]\\ & = [\mspace {-3mu}[x\mapsto f\webleft (x\webright )]\mspace {-3mu}]\\ & = f\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\text{id}_{\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )}\webright ]\webleft (f\webright ) \end{align*}

    for each $f\in \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )$. Thus, we have

    \[ \chi _{\webleft (-\webright )}\circ \Phi =\text{id}_{\mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )}. \]

This finishes the proof.

Item 3: Naturality
We proceed in two steps:
  1. Naturality of $\chi _{\webleft (-\webright )}$. We have
    \begin{align*} \webleft [\chi _{V}\circ f\webright ]\webleft (v\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{V}\webleft (f\webleft (v\webright )\webright )\\ & = \begin{cases} \mathsf{true}& \text{if $f\webleft (v\webright )\in V$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & = \begin{cases} \mathsf{true}& \text{if $v\in f^{-1}\webleft (V\webright )$,}\\ \mathsf{false}& \text{otherwise} \end{cases}\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{f^{-1}\webleft (V\webright )}\webleft (v\webright )\end{align*}

    for each $v\in V$.

  2. Naturality of $\Phi $. Since $\chi _{\webleft (-\webright )}$ is natural and a componentwise inverse to $\Phi $, it follows from Chapter 9: Preorders, Item 2 of Proposition 9.9.7.1.2 that $\Phi $ is also natural in each argument.

This finishes the proof.

Item 4: Interaction With Unions I
This is a repetition of Item 10 of Proposition 2.3.8.1.2 and is proved there.
Item 5: Interaction With Unions II
This is a repetition of Item 11 of Proposition 2.3.8.1.2 and is proved there.
Item 6: Interaction With Intersections I
This is a repetition of Item 10 of Proposition 2.3.9.1.2 and is proved there.
Item 7: Interaction With Intersections II
This is a repetition of Item 11 of Proposition 2.3.9.1.2 and is proved there.
Item 8: Interaction With Differences
This is a repetition of Item 16 of Proposition 2.3.10.1.2 and is proved there.
Item 9: Interaction With Complements
This is a repetition of Item 4 of Proposition 2.3.11.1.2 and is proved there.
Item 10: Interaction With Symmetric Differences
This is a repetition of Item 15 of Proposition 2.3.12.1.2 and is proved there.
Item 11: Interaction With Internal Homs
This is a repetition of Item 17 of Proposition 2.4.7.1.3 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: