Let $X$ be a set.
-
Functionality. The assignment $U\mapsto \chi _{U}$ defines a function
\[ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ). \]
- Bijectivity. The function $\chi _{\webleft (-\webright )}$ from Item 1 is bijective.
-
Naturality. The collection
\[ \webleft\{ \chi _{\webleft (-\webright )}\colon \mathcal{P}\webleft (X\webright )\to \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright )\webright\} _{X\in \text{Obj}\webleft (\mathsf{Sets}\webright )} \]
defines a natural isomorphism between $\mathcal{P}^{-1}$ and $\mathsf{Sets}\webleft (-,\{ \mathsf{t},\mathsf{f}\} \webright )$. In particular, given a function $f\colon X\to Y$, the diagram
commutes, i.e. we have
\[ \chi _{V}\circ f=\chi _{f^{-1}\webleft (V\webright )} \]for each $V\in \mathcal{P}\webleft (Y\webright )$.
-
Interaction With Unions I. We have
\[ \chi _{U\cup V}=\operatorname*{\text{max}}\webleft (\chi _{U},\chi _{V}\webright ) \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Unions II. We have
\[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Intersections I. We have
\[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Intersections II. We have
\[ \chi _{U\cap V}=\operatorname*{\text{min}}\webleft (\chi _{U},\chi _{V}\webright ) \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Differences. We have
\[ \chi _{U\setminus V}=\chi _{U}-\chi _{U\cap V} \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Complements. We have
\[ \chi _{U^{\textsf{c}}}\equiv 1-\chi _{U}\ \ (\mathrm{mod}\ 2) \]
for each $U\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Symmetric Differences. We have
\[ \chi _{U\mathbin {\triangle }V}=\chi _{U}+\chi _{V}-2\chi _{U\cap V} \]
and thus, in particular, we have
\[ \chi _{U\mathbin {\triangle }V}\equiv \chi _{U}+\chi _{V}\ \ (\mathrm{mod}\ 2) \]for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Internal Homs. We have
\[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}=\operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.