Let $X$ be a set.

  1. The Inclusion of Characteristic Relations Associated to a Function. Let $f\colon A\to B$ be a function. We have an inclusion[1]
  2. Interaction With Unions I. We have
    \[ \chi _{U\cup V}=\operatorname*{\text{max}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  3. Interaction With Unions II. We have
    \[ \chi _{U\cup V}=\chi _{U}+\chi _{V}-\chi _{U\cap V} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  4. Interaction With Intersections I. We have
    \[ \chi _{U\cap V}=\chi _{U}\chi _{V} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  5. Interaction With Intersections II. We have
    \[ \chi _{U\cap V}=\operatorname*{\text{min}}\webleft (\chi _{U},\chi _{V}\webright ) \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  6. Interaction With Differences. We have
    \[ \chi _{U\setminus V}=\chi _{U}-\chi _{U\cap V} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Complements. We have
    \[ \chi _{U^{\textsf{c}}}=1-\chi _{U} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U\in \mathcal{P}\webleft (X\webright )$.

  8. Interaction With Symmetric Differences. We have
    \[ \chi _{U\mathbin {\triangle }V}=\chi _{U}+\chi _{V}-2\chi _{U\cap V} \]

    and thus, in particular, we have

    \[ \chi _{U\mathbin {\triangle }V}\equiv \chi _{U}+\chi _{V}\mod {2} \]

    for each $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction Between the Characteristic Embedding and Morphisms. Let $f\colon X\to Y$ be a map of sets. The diagram
    commutes.

Item 1: The Inclusion of Characteristic Relations Associated to a Function
The inclusion $\chi _{B}\webleft (f\webleft (a\webright ),f\webleft (b\webright )\webright )\subset \chi _{A}\webleft (a,b\webright )$ is equivalent to the statement “if $a=b$, then $f\webleft (a\webright )=f\webleft (b\webright )$”, which is true.
Item 2: Interaction With Unions I
This is a repetition of Item 8 of Proposition 2.3.7.1.2 and is proved there.
Item 3: Interaction With Unions II
This is a repetition of Item 9 of Proposition 2.3.7.1.2 and is proved there.
Item 4: Interaction With Intersections I
This is a repetition of Item 9 of Proposition 2.3.9.1.2 and is proved there.
Item 5: Interaction With Intersections II
This is a repetition of Item 10 of Proposition 2.3.9.1.2 and is proved there.
Item 6: Interaction With Differences
This is a repetition of Item 15 of Proposition 2.3.10.1.2 and is proved there.
Item 7: Interaction With Complements
This is a repetition of Item 4 of Proposition 2.3.11.1.2 and is proved there.
Item 8: Interaction With Symmetric Differences
This is a repetition of Item 14 of Proposition 2.3.12.1.2 and is proved there.
Item 9: Interaction Between the Characteristic Embedding and Morphisms
Indeed, we have
\begin{align*} \webleft [f_{*}\circ \chi _{X}\webright ]\webleft (x\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (\chi _{X}\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}f_{*}\webleft (\webleft\{ x\webright\} \webright )\\ & = \webleft\{ f\webleft (x\webright )\webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\chi _{X'}\webleft (f\webleft (x\webright )\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\chi _{X'}\circ f\webright ]\webleft (x\webright ),\end{align*}

for each $x\in X$, showing the desired equality.


Footnotes

[1] This is the $0$-categorical version of Chapter 8: Categories, Definition 8.4.4.1.1.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: