Let $X$ be a set.
-
Functoriality. The assignments $U,V,\webleft (U,V\webright )\mapsto \mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}$ define functors
\[ \begin{array}{ccc} {\webleft [U,-\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-,V\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )},\\ {\webleft [-_{1},-_{2}\webright ]_{X}}\colon \mkern -15mu & {\webleft (\mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (X\webright ),\subset \times \supset \webright )} \mkern -17.5mu& {}\mathbin {\to }{\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )}. \end{array} \]
In particular, the following statements hold for each $U,V,A,B\in \mathcal{P}\webleft (X\webright )$:
-
Adjointness. We have adjunctions witnessed by bijections
\begin{align*} \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,\webleft [V,W\webright ]_{X}\webright ),\\ \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U\cap V,W\webright ) & \cong \textup{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (V,\webleft [U,W\webright ]_{X}\webright ). \end{align*}
In particular, the following statements hold for each $U,V,W\in \mathcal{P}\webleft (X\webright )$:
-
Interaction With the Empty Set I. We have
\begin{align*} \webleft [U,\text{Ø}\webright ]_{X} & = U^{\textsf{c}},\\ \webleft [\text{Ø},V\webright ]_{X} & = X, \end{align*}
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With $X$. We have
\begin{align*} \webleft [U,X\webright ]_{X} & = X,\\ \webleft [X,V\webright ]_{X} & = V, \end{align*}
natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With the Empty Set II. The functor
\[ D_{X} \colon \mathcal{P}\webleft (X\webright )^{\mathsf{op}}\to \mathcal{P}\webleft (X\webright ) \]
defined by
\begin{align*} D_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [-,\text{Ø}\webright ]_{X}\\ & = \webleft (-\webright )^{\textsf{c}}\end{align*}is an involutory isomorphism of categories, making $\text{Ø}$ into a dualising object for $\webleft (\mathcal{P}\webleft (X\webright ),\cap ,X,\webleft [-,-\webright ]_{X}\webright )$ in the sense of . In particular:
-
The diagram
commutes, i.e. we have
\[ \underbrace{D_{X}\webleft (D_{X}\webleft (U\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [\webleft [U,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=U \]for each $U\in \mathcal{P}\webleft (X\webright )$.
-
The diagram
commutes, i.e. we have
\[ \underbrace{D_{X}\webleft (U\cap D_{X}\webleft (V\webright )\webright )}_{\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft [U\cap \webleft [V,\text{Ø}\webright ]_{X},\text{Ø}\webright ]_{X}}=\webleft [U,V\webright ]_{X} \]for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
The diagram
-
Interaction With the Empty Set III. Let $f\colon X\to Y$ be a function.
-
Interaction With Direct Images. The diagram
commutes, i.e. we have
\[ f_{*}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{!}\webleft (U\webright )\webright ) \]for each $U\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Inverse Images. The diagram
commutes, i.e. we have
\[ f^{-1}\webleft (D_{Y}\webleft (U\webright )\webright )=D_{X}\webleft (f^{-1}\webleft (U\webright )\webright ) \]for each $U\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Direct Images With Compact Support. The diagram
commutes, i.e. we have
\[ f_{!}\webleft (D_{X}\webleft (U\webright )\webright )=D_{Y}\webleft (f_{*}\webleft (U\webright )\webright ) \]for each $U\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Direct Images. The diagram
-
Interaction With Unions of Families of Subsets I. The diagram
does not commute in general, i.e. we may have
\[ \bigcup _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \webleft[\bigcup _{U\in \mathcal{U}}U,\bigcup _{V\in \mathcal{V}}V\webright]_{X} \]in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
-
Interaction With Unions of Families of Subsets II. The diagram
commutes, i.e. we have
\[ \webleft[\bigcup _{U\in \mathcal{U}}U,V\webright]_{X}= \bigcap _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Unions of Families of Subsets III. The diagram
commutes, i.e. we have
\[ \webleft[U,\bigcup _{V\in \mathcal{V}}V\webright]_{X}= \bigcup _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
-
Interaction With Intersections of Families of Subsets I. The diagram
does not commute in general, i.e. we may have
\[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X} \]in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
-
Interaction With Intersections of Families of Subsets II. The diagram
commutes, i.e. we have
\[ \webleft[\bigcap _{U\in \mathcal{U}}U,V\webright]_{X}= \bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Intersections of Families of Subsets III. The diagram
commutes, i.e. we have
\[ \webleft[U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}= \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.
-
Interaction With Binary Unions. We have equalities of sets
\begin{align*} \webleft [U\cap V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cap W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cap \webleft [U,W\webright ]_{X} \end{align*}
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Binary Intersections. We have equalities of sets
\begin{align*} \webleft [U\cup V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cap \webleft [V,W\webright ]_{X},\\ \webleft [U,V\cup W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\cup \webleft [U,W\webright ]_{X} \end{align*}
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Differences. We have equalities of sets
\begin{align*} \webleft [U\setminus V,W\webright ]_{X} & = \webleft [U,W\webright ]_{X}\cup \webleft [V^{\textsf{c}},W\webright ]_{X}\\ & = \webleft [U,W\webright ]_{X}\cup \webleft [U,V\webright ]_{X},\\ \webleft [U,V\setminus W\webright ]_{X} & = \webleft [U,V\webright ]_{X}\setminus \webleft (U\cap W\webright )\end{align*}
for each $U,V,W\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Complements. We have equalities of sets
\begin{align*} \webleft [U^{\textsf{c}},V\webright ]_{X} & = U\cup V,\\ \webleft [U,V^{\textsf{c}}\webright ]_{X} & = U\cap V,\\ \webleft [U,V\webright ]^{\textsf{c}}_{X} & = U\setminus V \end{align*}
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Characteristic Functions. We have
\[ \chi _{\webleft [U,V\webright ]_{\mathcal{P}\webleft (X\webright )}}\webleft (x\webright )=\operatorname*{\text{max}}\webleft (1-\chi _{U}\ (\mathrm{mod}\ 2),\chi _{V}\webright ) \]
for each $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Direct Images. Let $f\colon X\to Y$ be a function. The diagram
commutes, i.e. we have an equality of sets
\[ f_{*}\webleft (\webleft [U,V\webright ]_{X}\webright )=\webleft [f_{!}\webleft (U\webright ),f_{*}\webleft (V\webright )\webright ]_{Y}, \]natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Inverse Images. Let $f\colon X\to Y$ be a function. The diagram
commutes, i.e. we have an equality of sets
\[ f^{-1}\webleft (\webleft [U,V\webright ]_{Y}\webright )=\webleft [f^{-1}\webleft (U\webright ),f^{-1}\webleft (V\webright )\webright ]_{X}, \]natural in $U,V\in \mathcal{P}\webleft (X\webright )$.
-
Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a function. We have a natural transformation
with components
\[ \webleft [f_{*}\webleft (U\webright ),f_{!}\webleft (V\webright )\webright ]_{Y}\subset f_{!}\webleft (\webleft [U,V\webright ]_{X}\webright ) \]indexed by $U,V\in \mathcal{P}\webleft (X\webright )$.