Let $X$ be a set.

  1. Functoriality. The assignment $\mathcal{U}\mapsto \bigcap _{U\in \mathcal{U}}U$ defines a functor
    \[ \bigcap \colon \webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright ),\supset \webright )\to \webleft (\mathcal{P}\webleft (X\webright ),\subset \webright ). \]

    In particular, for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$, the following condition is satisfied:

    • If $\mathcal{U}\subset \mathcal{V}$, then $\displaystyle \bigcap _{V\in \mathcal{V}}V\subset \bigcap _{U\in \mathcal{U}}U$.

  2. Oplax Associativity. We have a natural transformation

    with components

    \[ \bigcap _{A\in \mathcal{A}}\webleft(\bigcap _{U\in A}U\webright)\subset \bigcap _{U\in \bigcap _{A\in \mathcal{A}}A}U \]

    for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$.

  3. Left Unitality. The diagram

    commutes, i.e. we have

    \[ \bigcap _{V\in \webleft\{ U\webright\} }V=U. \]

    for each $U\in \mathcal{P}\webleft (X\webright )$.

  4. Oplax Right Unitality. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{\webleft\{ x\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ x\webright\} \neq U \]

    in general, where $U\in \mathcal{P}\webleft (X\webright )$. However, when $U$ is nonempty, we have

    \[ \bigcap _{\webleft\{ x\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ x\webright\} \subset U. \]
  5. Interaction With Unions I. The diagram

    commutes, i.e. we have

    \[ \bigcap _{W\in \mathcal{U}\cup \mathcal{V}}W=\webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cap \webleft(\bigcap _{V\in \mathcal{V}}V\webright) \]

    for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  6. Interaction With Unions II. The diagram
    commute, i.e. we have
    \begin{align*} U\cup \webleft(\bigcap _{V\in \mathcal{V}}V\webright) & = \bigcap _{V\in \mathcal{V}}\webleft (U\cup V\webright ),\\ \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cup V & = \bigcap _{U\in \mathcal{U}}\webleft (U\cup V\webright )\end{align*}

    for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  7. Interaction With Intersections I. We have a natural transformation

    with components

    \[ \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cap \webleft(\bigcap _{V\in \mathcal{V}}V\webright)\subset \bigcap _{W\in \mathcal{U}\cap \mathcal{V}}W \]

    for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  8. Interaction With Intersections II. The diagrams
    commute, i.e. we have
    \begin{align*} U\cup \webleft(\bigcap _{V\in \mathcal{V}}V\webright) & = \bigcap _{V\in \mathcal{V}}\webleft (U\cup V\webright ),\\ \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cup V & = \bigcap _{U\in \mathcal{U}}\webleft (U\cup V\webright )\end{align*}

    for each $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $U,V\in \mathcal{P}\webleft (X\webright )$.

  9. Interaction With Differences. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}W\neq \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\setminus \webleft(\bigcap _{V\in \mathcal{V}}V\webright) \]

    in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  10. Interaction With Complements I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \mathcal{U}^{\textsf{c}}}W\neq \bigcap _{U\in \mathcal{U}}U^{\textsf{c}} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  11. Interaction With Complements II. The diagram

    commutes, i.e. we have

    \[ \webleft(\bigcap _{U\in \mathcal{U}}U\webright)^{\textsf{c}}=\bigcup _{U\in \mathcal{U}}U^{\textsf{c}} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  12. Interaction With Complements III. The diagram

    commutes, i.e. we have

    \[ \webleft(\bigcup _{U\in \mathcal{U}}U\webright)^{\textsf{c}}=\bigcap _{U\in \mathcal{U}}U^{\textsf{c}} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  13. Interaction With Symmetric Differences. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W\neq \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\mathbin {\triangle }\webleft(\bigcap _{V\in \mathcal{V}}V\webright) \]

    in general, where $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  14. Interaction With Internal Homs I. The diagram

    does not commute in general, i.e. we may have

    \[ \bigcap _{W\in \webleft [\mathcal{U},\mathcal{V}\webright ]_{\mathcal{P}\webleft (X\webright )}}W\neq \webleft[\bigcap _{U\in \mathcal{U}}U,\bigcap _{V\in \mathcal{V}}V\webright]_{X} \]

    in general, where $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  15. Interaction With Internal Homs II. The diagram

    commutes, i.e. we have

    \[ \webleft[\bigcap _{U\in \mathcal{U}}U,V\webright]_{X}= \bigcup _{U\in \mathcal{U}}\webleft [U,V\webright ]_{X} \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ and each $V\in \mathcal{P}\webleft (X\webright )$.

  16. Interaction With Internal Homs III. The diagram

    commutes, i.e. we have

    \[ \webleft[U,\bigcap _{V\in \mathcal{V}}V\webright]_{X}= \bigcap _{V\in \mathcal{V}}\webleft [U,V\webright ]_{X} \]

    for each $U\in \mathcal{P}\webleft (X\webright )$ and each $\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  17. Interaction With Direct Images. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in \mathcal{U}}f_{*}\webleft (U\webright )=\bigcap _{V\in f_{*}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{*}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{*}\webright )_{*}\webleft (\mathcal{U}\webright )$.

  18. Interaction With Inverse Images. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{V\in \mathcal{V}}f^{-1}\webleft (V\webright )=\bigcap _{U\in f^{-1}\webleft (\mathcal{U}\webright )}U \]

    for each $\mathcal{V}\in \mathcal{P}\webleft (Y\webright )$, where $f^{-1}\webleft (\mathcal{V}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f^{-1}\webright )^{-1}\webleft (\mathcal{V}\webright )$.

  19. Interaction With Direct Images With Compact Support. Let $f\colon X\to Y$ be a map of sets. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in \mathcal{U}}f_{!}\webleft (U\webright )=\bigcap _{V\in f_{!}\webleft (\mathcal{U}\webright )}V \]

    for each $\mathcal{U}\in \mathcal{P}\webleft (X\webright )$, where $f_{!}\webleft (\mathcal{U}\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (f_{!}\webright )_{!}\webleft (\mathcal{U}\webright )$.

  20. Interaction With Unions of Families I. The diagram

    commutes, i.e. we have

    \[ \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U=\bigcap _{A\in \mathcal{A}}\webleft(\bigcap _{U\in A}U\webright) \]

    for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$.

  21. Interaction With Unions of Families II. Let $X$ be a set and consider the compositions

    given by

    \[ \begin{aligned} \mathcal{A} & \mapsto \bigcup _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}}A}U,\\ \mathcal{A} & \mapsto \bigcup _{A\in \mathcal{A}}\webleft(\bigcap _{U\in A}U\webright), \end{aligned} \quad \begin{aligned} \mathcal{A} & \mapsto \bigcap _{U\in {\scriptsize \displaystyle \bigcup _{A\in \mathcal{A}}A}}U,\\ \mathcal{A} & \mapsto \bigcap _{A\in \mathcal{A}}\webleft(\bigcup _{U\in A}U\webright) \end{aligned} \]

    for each $\mathcal{A}\in \mathcal{P}\webleft (\mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )\webright )$. We have the following inclusions:

    All other possible inclusions fail to hold in general.

Item 1: Functoriality
Since $\mathcal{P}\webleft (X\webright )$ is posetal, it suffices to prove the condition $\webleft (\star \webright )$. So let $\mathcal{U},\mathcal{V}\in \mathcal{P}\webleft (\mathcal{P}\webleft (X\webright )\webright )$ with $\mathcal{U}\subset \mathcal{V}$. We claim that
\[ \bigcap _{V\in \mathcal{V}}V\subset \bigcap _{U\in \mathcal{U}}U. \]

Indeed, if $x\in \bigcap _{V\in \mathcal{V}}V$, then $x\in V$ for all $V\in \mathcal{V}$. But since $\mathcal{U}\subset \mathcal{V}$, it follows that $x\in U$ for all $U\in \mathcal{U}$ as well. Thus $x\in \bigcap _{U\in \mathcal{U}}U$, which gives our desired inclusion.

Item 2: Oplax Associativity
We have
\begin{align*} \bigcap _{A\in \mathcal{A}}\webleft(\bigcap _{U\in A}U\webright) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $A\in \mathcal{A}$,}\\ & \text{we have $x\in \bigcap _{U\in A}U$} \end{aligned} \webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $A\in \mathcal{A}$ and each}\\ & \text{$U\in A$, we have $x\in U$} \end{aligned} \webright\} \\ & = \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \displaystyle \bigcup _{A\in \mathcal{A}}A$,}\\ & \text{we have $x\in U$} \end{aligned} \webright\} \\ & \subset \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \displaystyle \bigcap _{A\in \mathcal{A}}A$,}\\ & \text{we have $x\in U$} \end{aligned} \webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{U\in {\scriptsize \displaystyle \bigcap _{A\in \mathcal{A}}A}}U. \end{align*}

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (). This finishes the proof.

Item 3: Left Unitality
We have
\begin{align*} \bigcap _{V\in \webleft\{ U\webright\} }V & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $V\in \webleft\{ U\webright\} $,}\\ & \text{we have $x\in U$} \end{aligned} \webright\} \\ & = \webleft\{ x\in X\ \middle |\ x\in U \webright\} \\ & = U.\end{align*}

This finishes the proof.

Item 4: Oplax Right Unitality
If $U=\text{Ø}$, then we have
\begin{align*} \bigcap _{\webleft\{ u\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ u\webright\} & = \bigcap _{\webleft\{ u\webright\} \in \text{Ø}}\webleft\{ u\webright\} \\ & = X,\end{align*}

so $\bigcap _{\webleft\{ u\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ u\webright\} =X\neq \text{Ø}=U$. When $U$ is nonempty, we have two cases:

  1. If $U$ is a singleton, say $U=\webleft\{ u\webright\} $, we have
    \begin{align*} \bigcap _{\webleft\{ u\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ u\webright\} & = \webleft\{ u\webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U.\end{align*}
  2. If $U$ contains at least two elements, we have
    \begin{align*} \bigcap _{\webleft\{ u\webright\} \in \chi _{X}\webleft (U\webright )}\webleft\{ u\webright\} & = \text{Ø}\\ & \subset U.\end{align*}

This finishes the proof.

Item 5: Interaction With Unions I
We have
\begin{align*} \bigcap _{W\in \mathcal{U}\cup \mathcal{V}}W & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cup \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \webright\} \\ & = \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}$ and each}\\ & \text{$W\in \mathcal{V}$, we have $x\in W$} \end{aligned} \webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}$,}\\ & \text{we have $x\in W$} \end{aligned} \webright\} \\ & \phantom{={}}\mkern 4mu\cap \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft(\bigcap _{W\in \mathcal{U}}W\webright)\cap \webleft(\bigcap _{W\in \mathcal{V}}W\webright)\\ & = \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cap \webleft(\bigcap _{V\in \mathcal{V}}V\webright). \end{align*}

This finishes the proof.

Item 6: Interaction With Unions II
Omitted.
Item 7: Interaction With Intersections I
We have

\begin{align*} \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\cap \webleft(\bigcap _{V\in \mathcal{V}}V\webright) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $U\in \mathcal{U}$,}\\ & \text{we have $x\in U$} \end{aligned} \webright\} \\ & \phantom{={}}\mkern 4mu\cup \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $V\in \mathcal{V}$,}\\ & \text{we have $x\in V$} \end{aligned} \webright\} \\ & = \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cap \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \webright\} \\ & \subset \webleft\{ x\in X\ \middle |\ \begin{aligned} & \text{for each $W\in \mathcal{U}\cup \mathcal{V}$,}\\ & \text{we have $x\in W$} \end{aligned} \webright\} \\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\bigcap _{W\in \mathcal{U}\cap \mathcal{V}}W.\end{align*}

Since $\mathcal{P}\webleft (X\webright )$ is posetal, naturality is automatic (). This finishes the proof.

Item 8: Interaction With Intersections II
Omitted.
Item 9: Interaction With Differences
Let $X=\webleft\{ 0,1\webright\} $, let $\mathcal{U}=\webleft\{ \webleft\{ 0\webright\} ,\webleft\{ 0,1\webright\} \webright\} $, and let $\mathcal{V}=\webleft\{ \webleft\{ 0\webright\} \webright\} $. We have

\begin{align*} \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}U & = \bigcap _{W\in \webleft\{ \webleft\{ 0,1\webright\} \webright\} }W\\ & = \webleft\{ 0,1\webright\} , \end{align*}

whereas

\begin{align*} \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\setminus \webleft(\bigcap _{V\in \mathcal{V}}V\webright) & = \webleft\{ 0\webright\} \setminus \webleft\{ 0\webright\} \\ & = \text{Ø}. \end{align*}

Thus we have

\[ \bigcap _{W\in \mathcal{U}\setminus \mathcal{V}}W=\webleft\{ 0,1\webright\} \neq \text{Ø}=\webleft(\bigcap _{U\in \mathcal{U}}U\webright)\setminus \webleft(\bigcap _{V\in \mathcal{V}}V\webright). \]

This finishes the proof.

Item 10: Interaction With Complements I
Let $X=\webleft\{ 0,1\webright\} $ and let $\mathcal{U}=\webleft\{ \webleft\{ 0\webright\} \webright\} $. We have
\begin{align*} \bigcap _{W\in \mathcal{U}^{\textsf{c}}}U & = \bigcap _{W\in \webleft\{ \text{Ø},\webleft\{ 1\webright\} ,\webleft\{ 0,1\webright\} \webright\} }W\\ & = \text{Ø}, \end{align*}

whereas

\begin{align*} \bigcap _{U\in \mathcal{U}}U^{\textsf{c}} & = \webleft\{ 0\webright\} ^{\textsf{c}}\\ & = \webleft\{ 1\webright\} . \end{align*}

Thus we have

\[ \bigcap _{W\in \mathcal{U}^{\textsf{c}}}U=\text{Ø}\neq \webleft\{ 1\webright\} =\bigcap _{U\in \mathcal{U}}U^{\textsf{c}}. \]

This finishes the proof.

Item 11: Interaction With Complements II
This is a repetition of Item 12 of Proposition 2.3.6.1.2 and is proved there.
Item 12: Interaction With Complements III
This is a repetition of Item 11 of Proposition 2.3.6.1.2 and is proved there.
Item 13: Interaction With Symmetric Differences
Let $X=\webleft\{ 0,1\webright\} $, let $\mathcal{U}=\webleft\{ \webleft\{ 0,1\webright\} \webright\} $, and let $\mathcal{V}=\webleft\{ \webleft\{ 0\webright\} ,\webleft\{ 0,1\webright\} \webright\} $. We have
\begin{align*} \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W & = \bigcap _{W\in \webleft\{ \webleft\{ 0\webright\} \webright\} }W\\ & = \webleft\{ 0\webright\} , \end{align*}

whereas

\begin{align*} \webleft(\bigcap _{U\in \mathcal{U}}U\webright)\mathbin {\triangle }\webleft(\bigcap _{V\in \mathcal{V}}V\webright) & = \webleft\{ 0,1\webright\} \mathbin {\triangle }\webleft\{ 0\webright\} \\ & = \text{Ø}, \end{align*}

Thus we have

\[ \bigcap _{W\in \mathcal{U}\mathbin {\triangle }\mathcal{V}}W=\webleft\{ 0\webright\} \neq \text{Ø}=\webleft(\bigcap _{U\in \mathcal{U}}U\webright)\mathbin {\triangle }\webleft(\bigcap _{V\in \mathcal{V}}V\webright). \]

This finishes the proof.

Item 14: Interaction With Internal Homs I
This is a repetition of Item 10 of Proposition 2.4.7.1.3 and is proved there.
Item 15: Interaction With Internal Homs II
This is a repetition of Item 11 of Proposition 2.4.7.1.3 and is proved there.
Item 16: Interaction With Internal Homs III
This is a repetition of Item 12 of Proposition 2.4.7.1.3 and is proved there.
Item 17: Interaction With Direct Images
This is a repetition of Item 4 of Proposition 2.6.1.1.4 and is proved there.
Item 18: Interaction With Inverse Images
This is a repetition of Item 4 of Proposition 2.6.2.1.3 and is proved there.
Item 19: Interaction With Direct Images With Compact Support
This is a repetition of Item 4 of Proposition 2.6.3.1.6 and is proved there.
Item 20: Interaction With Unions of Families I
This is a repetition of Item 20 of Proposition 2.3.6.1.2 and is proved there.
Item 21: Interaction With Unions of Families II
This is a repetition of Item 21 of Proposition 2.3.6.1.2 and is proved there.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: