2.4 Powersets

  • Subsection 2.4.1: Foundations
    • Definition 2.4.1.1.1: Powersets
    • Remark 2.4.1.1.2: Powersets as Decategorifications of Co/Presheaf Categories
    • Notation 2.4.1.1.3: Further Notation for Powersets
    • Proposition 2.4.1.1.4: Elementary Properties of Powersets
  • Subsection 2.4.2: Functoriality of Powersets
    • Proposition 2.4.2.1.1: Functoriality of Powersets
  • Subsection 2.4.3: Adjointness of Powersets I
    • Proposition 2.4.3.1.1: Adjointness of Powersets I
  • Subsection 2.4.4: Adjointness of Powersets II
    • Proposition 2.4.4.1.1: Adjointness of Powersets II
  • Subsection 2.4.5: Powersets as Free Cocompletions
    • Proposition 2.4.5.1.1: Powersets as Free Cocompletions: Universal Property
    • Proposition 2.4.5.1.2: Powersets as Free Cocompletions: Adjointness
    • Warning 2.4.5.1.3: Free Cocompletion Is Not an Idempotent Operation
  • Subsection 2.4.6: Powersets as Free Completions
    • Proposition 2.4.6.1.1: Powersets as Free Completions: Universal Property
    • Proposition 2.4.6.1.2: Powersets as Free Completions: Adjointness
    • Warning 2.4.6.1.3: Free Completion Is Not an Idempotent Operation
  • Subsection 2.4.7: The Internal Hom of a Powerset
    • Definition 2.4.7.1.1: The Internal Hom of a Powerset
    • Remark 2.4.7.1.2: Intuition for the Internal Hom of $\mathcal{P}\webleft (X\webright )$
    • Proposition 2.4.7.1.3: Properties of Internal Homs of Powersets
  • Subsection 2.4.8: Isbell Duality for Sets
    • Definition 2.4.8.1.1: The Isbell Function
    • Remark 2.4.8.1.2: Motivation for the Isbell Function
    • Proposition 2.4.8.1.3: Isbell Duality for Sets

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: