The internal Hom of $\mathcal{P}\webleft (X\webright )$ from $U$ to $V$ is the subset $\webleft [U,V\webright ]_{X}$1 of $X$ defined by

\begin{align*} \webleft [U,V\webright ]_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}U^{\textsf{c}}\cup V\\ & = \webleft (U\setminus V\webright )^{\textsf{c}}\end{align*}

where $U^{\textsf{c}}$ is the complement of $U$ of Definition 2.3.11.1.1.


1Further Notation: Also written $\mathbf{Hom}_{\mathcal{P}\webleft (X\webright )}\webleft (U,V\webright )$.

We have

\begin{align*} \webleft (U\setminus V\webright )^{\textsf{c}} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}X\setminus \webleft (U\setminus V\webright )\\ & = \webleft (X\cap V\webright )\cup \webleft (X\setminus U\webright )\\ & = V\cup \webleft (X\setminus U\webright )\\ & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}V\cup U^{\textsf{c}}\\ & = U^{\textsf{c}}\cup V,\end{align*}

where we have used:

  1. Item 10 of Proposition 2.3.10.1.2 for the second equality.
  2. Item 4 of Proposition 2.3.9.1.2 for the third equality.
  3. Item 4 of Proposition 2.3.8.1.2 for the last equality.

This finishes the proof.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: