2.4.1 Foundations

Let $X$ be a set.

The powerset of $X$ is the set $\mathcal{P}\webleft (X\webright )$ defined by

\[ \mathcal{P}\webleft (X\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ U\in P\ \middle |\ U\subset X\webright\} , \]

where $P$ is the set in the axiom of powerset, of .

Under the analogy that $\{ \mathsf{t},\mathsf{f}\} $ should be the $\webleft (-1\webright )$-categorical analogue of $\mathsf{Sets}$, we may view the powerset of a set as a decategorification of the category of presheaves of a category (or of the category of copresheaves):

  • The powerset of a set $X$ is equivalently (Item 2 of Proposition 2.5.1.1.4) the set

    \[ \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

    of functions from $X$ to the set $\{ \mathsf{t},\mathsf{f}\} $ of classical truth values.

  • The category of presheaves on a category $\mathcal{C}$ is the category

    \[ \mathsf{Fun}\webleft (\mathcal{C}^{\mathsf{op}},\mathsf{Sets}\webright ) \]

    of functors from $\mathcal{C}^{\mathsf{op}}$ to the category $\mathsf{Sets}$ of sets.

Let $X$ be a set.

  1. We write $\mathcal{P}_{0}\webleft (X\webright )$ for the set of nonempty subsets of $X$.
  2. We write $\mathcal{P}_{\mathrm{fin}}\webleft (X\webright )$ for the set of finite subsets of $X$.

Let $X$ be a set.

  1. Co/Completeness. The (posetal) category (associated to) $\webleft (\mathcal{P}\webleft (X\webright ),\subset \webright )$ is complete and cocomplete:
    1. Products. The products in $\mathcal{P}\webleft (X\webright )$ are given by intersection of subsets.
    2. Coproducts. The coproducts in $\mathcal{P}\webleft (X\webright )$ are given by union of subsets.
    3. Co/Equalisers. Being a posetal category, $\mathcal{P}\webleft (X\webright )$ only has at most one morphisms between any two objects, so co/equalisers are trivial.
  2. Cartesian Closedness. The category $\mathcal{P}\webleft (X\webright )$ is Cartesian closed.
  3. Powersets as Sets of Relations. We have bijections
    \begin{align*} \mathcal{P}\webleft (X\webright ) & \cong \mathrm{Rel}\webleft (\text{pt},X\webright ),\\ \mathcal{P}\webleft (X\webright ) & \cong \mathrm{Rel}\webleft (X,\text{pt}\webright ), \end{align*}

    natural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$.

  4. Interaction With Products I. The map
    is an isomorphism of sets, natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ on $\mathcal{P}$ of Proposition 2.4.2.1.1. Moreover, this makes $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ into symmetric monoidal functors.
  5. Interaction With Products II. The map
    where
    \[ U\boxtimes _{X\times Y}V\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ \webleft (u,v\webright )\in X\times Y\ \middle |\ \text{$u\in U$ and $v\in V$}\webright\} \]

    is an inclusion of sets, natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ on $\mathcal{P}$ of Proposition 2.4.2.1.1. Moreover, this makes $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ into symmetric monoidal functors.

  6. Interaction With Products III. We have an isomorphism
    \[ \mathcal{P}\webleft (X\webright )\otimes \mathcal{P}\webleft (Y\webright )\cong \mathcal{P}\webleft (X\times Y\webright ), \]

    natural in $X,Y\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ with respect to each of the functor structures $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ on $\mathcal{P}$ of Proposition 2.4.2.1.1, where $\otimes $ denotes the tensor product of suplattices of . Moreover, this makes $\mathcal{P}_{*}$, $\mathcal{P}^{-1}$, and $\mathcal{P}_{!}$ into symmetric monoidal functors.

Item 1: Co/Completeness
Omitted.
Item 2: Cartesian Closedness
See Section 2.4.7.
Item 3: Powersets as Sets of Relations
Indeed, we have
\begin{align*} \mathrm{Rel}\webleft (\text{pt},X\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (\text{pt}\times X\webright )\\ & \cong \mathcal{P}\webleft (X\webright ) \end{align*}

and

\begin{align*} \mathrm{Rel}\webleft (X,\text{pt}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (X\times \text{pt}\webright )\\ & \cong \mathcal{P}\webleft (X\webright ), \end{align*}

where we have used Item 4 of Proposition 2.1.3.1.3.

Item 4: Interaction With Products I
The inverse of the map in the statement is the map
\[ \Phi \colon \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\to \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \]

defined by

\[ \Phi \webleft (S\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (S_{X},S_{Y}\webright ) \]

for each $S\in \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )$, where

\begin{align*} S_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \webleft (0,x\webright )\in S\webright\} \\ S_{Y} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ y\in Y\ \middle |\ \webleft (1,y\webright )\in S\webright\} . \end{align*}

The rest of the proof is omitted.

Item 5: Interaction With Products II
Omitted.
Item 6: Interaction With Products III
Omitted.


Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: