Let $X$ be a set.
The powerset of $X$ is the set $\mathcal{P}\webleft (X\webright )$ defined by
\[ \mathcal{P}\webleft (X\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ U\in P\ \middle |\ U\subset X\webright\} , \]
where $P$ is the set in the axiom of powerset, of .
Omitted.
See Section 2.4.7.
Item 3: Powersets as Sets of Relations
Indeed, we have
\begin{align*} \mathrm{Rel}\webleft (\text{pt},X\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (\text{pt}\times X\webright )\\ & \cong \mathcal{P}\webleft (X\webright ) \end{align*}
and
\begin{align*} \mathrm{Rel}\webleft (X,\text{pt}\webright ) & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathcal{P}\webleft (X\times \text{pt}\webright )\\ & \cong \mathcal{P}\webleft (X\webright ), \end{align*}
where we have used Item 4 of Proposition 2.1.3.1.3.
Item 4: Interaction With Products I
The inverse of the map in the statement is the map
\[ \Phi \colon \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )\to \mathcal{P}\webleft (X\webright )\times \mathcal{P}\webleft (Y\webright ) \]
defined by
\[ \Phi \webleft (S\webright )\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft (S_{X},S_{Y}\webright ) \]
for each $S\in \mathcal{P}\webleft (X\mathchoice {\mathbin {\textstyle \coprod }}{\mathbin {\textstyle \coprod }}{\mathbin {\scriptstyle \textstyle \coprod }}{\mathbin {\scriptscriptstyle \textstyle \coprod }}Y\webright )$, where
\begin{align*} S_{X} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ x\in X\ \middle |\ \webleft (0,x\webright )\in S\webright\} \\ S_{Y} & \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\webleft\{ y\in Y\ \middle |\ \webleft (1,y\webright )\in S\webright\} . \end{align*}
The rest of the proof is omitted.
Item 5: Interaction With Products II
Omitted.
Item 6: Interaction With Products III
Omitted.