The powerset of a set is a decategorification of the category of presheaves of a category: while[1]

  • The powerset of a set $X$ is equivalently (Item 1 and Item 2 of Proposition 2.4.3.1.6) the set

    \[ \mathsf{Sets}\webleft (X,\{ \mathsf{t},\mathsf{f}\} \webright ) \]

    of functions from $X$ to the set $\{ \mathsf{t},\mathsf{f}\} $ of classical truth values.

  • The category of presheaves on a category $\mathcal{C}$ is the category

    \[ \mathsf{Fun}\webleft (\mathcal{C}^{\mathsf{op}},\mathsf{Sets}\webright ) \]

    of functors from $\mathcal{C}^{\mathsf{op}}$ to the category $\mathsf{Sets}$ of sets.


Footnotes

[1] This parallel is based on the following comparison:
  • A category is enriched over the category
    \[ \mathsf{Sets}\mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{0} \]
    of sets (i.e. “$0$-categories”), with presheaves taking values on it.
  • A set is enriched over the set
    \[ \{ \mathsf{t},\mathsf{f}\} \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\mathsf{Cats}_{-1} \]
    of classical truth values (i.e. “$\webleft (-1\webright )$-categories”), with characteristic functions taking values on it.

Noticed something off, or have any comments? Feel free to reach out!


You can also use the contact form below: