Recall from Remark 2.4.1.1.2 that we may view the powerset $\mathcal{P}\webleft (X\webright )$ of a set $X$ as the decategorification of the category of presheaves $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ of a category $\mathcal{C}$. Building upon this analogy, we want to mimic the definition of the Isbell $\mathsf{Spec}$ functor, which is given on objects by
for each $\mathcal{F}\in \text{Obj}\webleft (\mathsf{PSh}\webleft (\mathcal{C}\webright )\webright )$. To this end, we could define
replacing:
- The Yoneda embedding $X\mapsto h_{X}$ of $\mathcal{C}$ into $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ with the characteristic embedding $x\mapsto \chi _{x}$ of $X$ into $\mathcal{P}\webleft (X\webright )$ of Definition 2.5.4.1.1.
- The internal Hom $\text{Nat}$ of $\mathsf{PSh}\webleft (\mathcal{C}\webright )$ with the internal Hom $\webleft [-,-\webright ]_{X}$ of $\mathcal{P}\webleft (X\webright )$ of Definition 2.4.7.1.1.
instead of a function
This makes some of the properties involving $\mathsf{I}$ a bit more cumbersome to state, although we still have an analogue of Isbell duality in that $\mathsf{I}_{*}\circ \mathsf{I}$ evaluates to $\text{id}_{\mathcal{P}\webleft (X\webright )}$ in the sense of Proposition 2.4.8.1.3.