We have an adjunction
witnessed by a bijectionnatural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $Y\in \text{Obj}\webleft (\mathsf{Sets}^{\mathsf{op}}\webright )$.
Here's a breakdown of the differences between each PDF style:
Style | Class | Font | Theorem Environments |
---|---|---|---|
Style 1 | book |
Alegreya Sans | tcbthm |
Style 2 | book |
Alegreya Sans | amsthm |
Style 3 | book |
Arno* | amsthm |
Style 4 | book |
Computer Modern | amsthm |
*To be replaced with Linus Romer's Elemaints when it is released.
We have an adjunction
witnessed by a bijectionnatural in $X\in \text{Obj}\webleft (\mathsf{Sets}\webright )$ and $Y\in \text{Obj}\webleft (\mathsf{Sets}^{\mathsf{op}}\webright )$.
We have
$\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (A\webright ),B\webright ) \mathrel {\smash {\overset {\mathclap {\scriptscriptstyle \text{def}}}=}}\rlap {\mathsf{Sets}\webleft (B,\mathcal{P}\webleft (A\webright )\webright )}\phantom{\mkern 400mu}$
$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )}\cong \rlap {\mathsf{Sets}\webleft (B,\mathsf{Sets}\webleft (A,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$
(by Item 2 of Proposition 2.5.1.1.4)
$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A\times B,\{ \mathsf{t},\mathsf{f}\} \webright )}\phantom{\mkern 400mu}$
(by Item 2 of Proposition 2.1.3.1.3)
$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathsf{Sets}\webleft (B,\{ \mathsf{t},\mathsf{f}\} \webright )\webright )}\phantom{\mkern 400mu}$
(by Item 2 of Proposition 2.1.3.1.3)
$\phantom{\mathsf{Sets}^{\mathsf{op}}\webleft (\mathcal{P}\webleft (X\webright ),Y\webright )} \cong \rlap {\mathsf{Sets}\webleft (A,\mathcal{P}\webleft (B\webright )\webright )}\phantom{\mkern 400mu}$
(by Item 2 of Proposition 2.5.1.1.4)
with all bijections natural in $A$ and $B$.1